
PARTICLE VORTEX DUALITY: A REVIEW AND NUMERICAL
INVESTIGATION

Abstract. We explore particle vortex duality, i.e. the idea that the 3D XY-Model and

Abelian-Higgs Models are dual, with vortices in one model identified with particles in

the other model. First we review the models and give some heuristic theoretical evidence

for believing they describe the same physics. This culminates in a table to allow easy

comparison between their phases. Next we discuss how we can use numerics to find the

critical exponents of the models and check that they are the same. The Ising model is

used to provide a natural introduction to numerical simulations, before moving on to

simulating a model in the same universality class as the Abelian-Higgs Model. Finally

we conclude with a demonstration that the Abelian-Higgs Model undergoes an inverted

XY-Model type transition.
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1. Introduction

Particle vortex (PV) duality was first proposed by Peskin [9] in the late ‘70s. The idea

behind the duality is that the XY-Model and the Abelian-Higgs Model in fact represent

the same underlying physics, up to some relabeling. In Statistical Field Theory we called

this, perhaps less imposingly, universality. The idea here is the same; two seemingly

different physical phenomena or theories turn out to be identical when we look at their

field theoretic description. In particular, PV duality holds that the “relabeling” needed

to turn the XY-Model to the Abelian-Higgs Model is particle ↔ vortex. In other words,

that which we choose to call a particle in the XY-Model is a vortex of the Abelian-Higgs

Model, and vice versa (where here a vortex is defined by the winding of some local order
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parameter). In practice the PV duality means if we were interested in describing the

vortices of the XY-Model we might look to the Abelian-Higgs Model, since the vortex

degrees of freedom of a theory often lurk just out of sight. In this respect it seems clear

that the PV duality has a lot of practical significance. But is it true, and if so how would

we tell?

Just as with many other pieces of field theory, it is exceptionally difficult if not impossi-

ble to prove PV duality explicitly by showing that the partition function of the XY-Model

is equal to the partition function of the Abelian-Higgs Model in some appropriate regime.

We simply don’t have many non-perturbative tools to work with. Instead the PV duality,

and most other dualities, was “proven” with a lot of suggestive evidence. In the case of

the PV duality this evidence took the form of: nearly rigorous arguments with some

heuristic reasoning [9], the fact that duality can be shown explicitly in supersymmetric

theories [3], numerical evidence [2], and a large number of systems where there is an

underlying physical reason to expect the duality to hold, e.g. topological insulators [5].

In this essay we only have time to review one of these methods, and even then only to

scratch the surface of what’s been done. We’ll choose to focus on the numerical evidence

for the PV duality, but first we will give a review of the underlying models and some

physical systems they describe. We’ll use these physics to motivate the numerical results.

2. The Models

2.1. The XY-Model: Review and Critical Exponents. The XY-Model in 2 + 1

dimensions has action given by

SXY =

∫
d3x |∂µφ|2 − a|φ|2 −

b

2
|φ|4 + · · · ,

where φ is a complex scalar field. In its nonrelativistic form it is used to describe a

nonrelativistic superfluid. In this form the MFT description of the superfluid is known

as the Gross-Pitaevskii Equation (GPE) and it is often used to numerically simulate

nonrelativistic superfluids, producing images like Figure 1

Figure 1 provides a good introduction to what can happen in the XY-Model, but

shouldn’t be taken too seriously since it was produced with MFT instead of the full

theory and describes the nonrelativistic theory. In particular, the equilibrium statistical

mechanics of the nonrelativistic theory will be very different, since they will occur in two

spatial dimensions with no time dependence. Thus they will be subject to the Kosterlitz-

Thouless transition, something that the XY-Model in 2+1 dimensions is not [12].

However, provided we understand that the GPE is a MFT and don’t take it too seri-

ously, it will give us some insight into the XY-Model’s basic behavior in at least one of

its phases. In order to connect the complex scalar φ in our definition of the XY-Model to
2



Figure 1. Two vortices of charge 2π orbiting one another. The vortices
are part of a larger system that was previously simulated by the author
to study vortex nucleation from a hydrofoil. They were simulated using
a split-step Fourier method to solve the GPE. Note that the length scale
is in healing lengths ξ, which for our purposes is just the typical size of a
vortex.

the density and phase of the superfluid, we write φ = ρeiθ. Then ρ is the density of the

superfluid and θ is its phase, as shown in the MFT Figure 1. The figure demonstrates: 1)

that the fluctuations of ρ can occur around a nonzero value ρ0 and 2) that we can have

vortex-like excitations. As mentioned in the introduction a vortex is just the winding of

some local order parameter, which in this case is θ. Indeed if we travel counterclockwise

around the two singularities in θ we notice that the phase will increment by +2π; in

general this increment will be some integer, called the “winding number”, multiple of 2π.

Why is the winding number quantized? We will investigate further.

a < 0 :

The phase pictured in Figure 1 will arise when a < 0, i.e. when the system acquires a

nonzero ground state. To see this consider that

HXY = |∂tφ|2 + |~∇φ|2 + a|φ|2 +
b

2
|φ|4 + · · · .

Thus if a < 0 the potential a|φ|2 + b|φ|4/2 = aρ2 + bρ4/2 will be a Mexican hat potential.

It will be minimized when

0 =
∂

∂ρ

(
aρ2 +

b

2
ρ4

)
= 2aρ+ 2bρ3 =⇒ ρ0 =

√
−a
b
.
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As an aside, we have required b > 0 in order that HXY doesn’t reach arbitrarily low

energies by choosing fields with larger and larger values of |φ|2, and so ρ0 ∈ R. But then

since |φ| acquires a vacuum expectation value of ρ0, we will need to expand the vacuum

as φ = (ρ̃ + ρ0)eiθ, where ρ̃ will in fact be the quantity that remains small. Doing this

expansion, we note that up to a constant term

LXY =(∂µφ)(∂µφ∗)− a|φ|2 − b

2
|φ|4 + · · ·

=(∂µρe
iθ)(∂µρe−iθ)− aρ2 − b

2
ρ4 + · · · substituting ψ = ρeiθ

=(∂µρ)2 + i[ρ(∂µθ)(∂
µρ)− ρ(∂µθ)(∂µρ)] + ρ2(∂µθ)

2 − aρ2 − b

2
ρ4 + · · ·

=(∂µρ)2 + ρ2(∂µθ)
2 − aρ2 − b

2
ρ4 + · · ·

=⇒ LXY =(∂µρ̃)2 + (ρ̃+ ρ0)2(∂µθ)
2 + 2aρ̃2 − 2bρ0ρ̃

3 − b

2
ρ̃4 + · · · substituting ρ = ρ0 + ρ̃.

Now the mass term for ρ̃2 has a negative coefficient, so the excitation governed by ρ̃ will

have positive mass. This is as we would expect if we are expanding around the correct

ground state.

The original theory had a U(1) global symmetry φ→ eiαφ, where α is a constant. This

U(1) global symmetry had a current

αjµ =
δLXY
δ(∂µφ)

δφ+
δLXY
δ(∂µφ∗)

δφ∗

=(∂µφ∗)(iαφ) + (∂µφ)(−iαφ∗)

jµ =i(φ∂µφ∗ − φ∗∂µφ)

=i(ρeiθ∂µ(ρe−iθ)− ρe−iθ∂µ(ρeiθ))

=(ρ2∂µθ + ρ2∂µθ) = 2ρ2∂µθ.

Of course it makes sense that jµ ∝ ∂µθ since our global symmetry is just θ → θ + α.

However, we break this rotational symmetry when we choose a vacuum expectation value

for the field φ, i.e. 〈φ〉 = ρ0e
iθ0 for some θ0 ∈ R. Thus, as discussed in Statistical Field

Theory (SFT) we should expect to get a single Goldstone boson. This is exactly the field

θ. We see this by noting that the Lagrangian expanded around the correct ground state

has no terms of the form θ2 and therefore the θ excitations will be massless excitations in

our theory. We’ve already seen that when a < 0 the fluctuations of ρ will occur around

a nonzero value ρ0, our first observation about the phase shown in Figure 1. It turns out

that the existence of the Goldstone boson θ will give rise to our second observation, that

of vortex-like excitations.

We will now investigate these vortex excitations a little more. We note that θ need

not be single valued. Indeed θ → θ + 2π will leave φ unchanged since φ = ρeiφ. This

can be seen in Figure 1 by observing what appears to be dislocations associated with
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each vortex. Along this line of dislocations one side has θ = −π, while the other side

has θ = π. Since the sides differ by 2π they in fact give the same value of φ, and there

is no physical dislocation in the wavefunction. However, these dislocations do allow the

phase to increment by an integer multiple of 2π as we travel around a vortex excitation.

In other words, ∮
~∇θ · d~x = ∆θ = 2πn,

where n counts the number of times the phase winds around the vortex, or alternatively

the number of dislocation lines emenating from a vortex.

There is one important caveat to θ not being single valued, however. We obviously

don’t want our physical field φ = ρeiθ to be multivalued. So then suppose that θ = θ0

and θ = θ0 + σ at some point. The fact that φ is single valued means that ρ = ρeiσ. If

ρ 6= 0 this means that σ = 2πn for n ∈ Z. This is fine along a dislocation, as we have

seen σ = 2π at a dislocation line. But what about at the center of our vortex excitation?

By looking at the right hand side of Figure 1 we note that at the center θ takes all values

in [−π, π]. Then following through our logic above, this means that ρ = 0 at the center

of a vortex if we want to keep φ single valued. Indeed, looking at the left hand side of

Figure 1 we see that the density smoothly interpolates from ρ = ρ0 outside of the vortex

to a value of ρ = 0 at the center of the vortex. Suppose instead that ρ did not acquire

this vacuum expectation value of ρ0? Then there would be nothing to interpolate to

zero from, and it would be much harder to spot the vortices. This provides the biggest

distinction from the a > 0 case.

Before we move on to the a > 0 case we’d like to calculate the energy of some simple

vortex configurations, since the vortices are the most interesting feature of this phase.

We’ll follow the discussion of Section 4.4.1 of [12]. Take the system to be static for

the moment and to contain N vortices. Since we know from discussions in QFT that

T 00 = (∂tφ)2 + |~∇φ|2 + a|φ|2 + b|φ|4/2 + · · · for this model, then

E =

∫
d2x |~∇φ|2 + a|φ|2 +

b

2
|φ|4 + · · · neglecting time derivatives

=

∫
d2x ρ2|~∇θ|2 + |~∇ρ|2 + aρ2 +

b

2
ρ4 + · · ·

=

∫
d2x

[
ρ2

0|~∇θ|2 +O(ρ̃)
]
.

If we look at Figure 1 we can see that the density very quickly approaches ρ0 some

distance l outside the center of the vortex. This means that we should be free to neglect

the ρ̃ terms in the above integral, provided we lie outside the cores of the vortices. Then

E = Ecores + ρ2
0

∫
outside cores

d2x |~∇θ|2.

If we now take this to be the energy for this state, then the static field equation θ must

satisfy in the MFT will be ∇2θ = 0. Consider a single vortex, i.e. N = 1. From Figure
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1 we might guess that θ(r, ϑ) = ϑ describes the winding of the phase, as it appears to

increment continuously around the vortex. Indeed θ(r, ϑ) = ϑ satisfies ∇2θ = 0. A vortex

with winding number n > 1 will be described by θ(r, ϑ) = nϑ. But then ~∇θ = (n/r)~eϑ

and the energy becomes

E = Ecore + 2πρ2
0

∫
r>l

rdr
n2

r2
= Ecore + 2πρ2

0n
2 ln

(
L

l

)
,

where L is a cutoff to the system size. Thus the energy of a single vortex diverges

logarithmically in the system size, i.e. the vortices are gapped. Also note that it is

energetically more favorable to have |n| vortices of sign sgn(n) than one vortex of sign n

due to the fact that E ∝ n2.

It turns out that not only does the energy of a vortex diverge logarithmically, but that

the interaction between vortices is also logarithmic. To make this clear, we will make

some new definitions to rephrase the problem. Define ~v = ~∇θ, it will have equation of

motion ~∇ · ~v = ∇2θ = 0 from the static MFT. Though the divergence of ~v is zero its

curl will not be in general. For example let’s consider the above case of N = 1, so that

~v = ~∇θ = (n/r)~eϑ. Then ~∇× ~v = r−1∂r(nr/r)~̂z := f(~r)~̂z. This will be zero everywhere

except the origin. To find its value at the origin we consider the following integral over

some surface S containing the vortex at the origin∫
S

d2x f(~r) =

∫
S

d2x ~z · (~∇× ~v)

=

∮
C

d~x · ~v by Stokes

=

∮
C

d~x · ~∇θ.

But this integral is given by 2πn by definition of the vortex winding number. Since

f(~x) = 0 except at the origin, we conclude that f(~r) = 2πnδ(2)(~r).

Suppose now that we generalize to the case of N vortices with positions ~ri and winding

numbers ni, 1 ≤ i ≤ N . We will still have ~∇·~v = 0, but now ~∇×~v = 2π~̂z
∑

i niδ
(2)(~r−~ri).

This generalization should be obvious from the above example. Let’s put this in a more

familiar form by defining a vector ~E such that Ei = εijvj. The effect of the εij will just

be to change the divergence to a curl and vice versa, since ~∇ × ~v = ~̂zεij∇ivj for our 2d

vectors. Then ~E’s defining equations become

~∇× ~E = ~0 and ~∇ · ~E = 2π
∑
i

niδ
(2)(~r − ~ri).

But these are just the electrostatic equations in two dimensions for a system of N point

charges! Thus ~E = −~∇χ for some potential χ.

From the above we see that ∇2χ must give rise to delta functions. If we were in

three dimensions then χ ∼ 1/r. However, since we are in two dimensions we will need
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χ ∼ log(r) to give rise to this kind of behavior. In particular

χ(~r) =
∑
i

ni log

(
|~r − ~ri|

l

)
.

Now let’s use this to find the interaction energy between vortices.

E − Ecores =ρ2
0

∫
outside cores

d2x |~∇θ|2

=ρ2
0

∫
d2x |~v|2

=ρ2
0

∫
d2x | ~E|2 since εijεik = δjk

=ρ2
0

∫
d2x |~∇χ|2

=ρ2
0

∫
d2x χ(~∇ · ~E) integrating by parts

=2πρ2
0

∑
i

niχ(~ri)

=2πρ2
0

∑
i 6=j

ninj log

(
|~rj − ~ri|

l

)
,

where we’ve dropped the i = j terms, since these represent the energy of the core. Finally

we do see the Coulomb force in two dimensions, as we expected from the electrostatic

formulation. There is a logarithmically increasing attractive force between vortices of

opposite sign. The vortices in this model are thus sometimes said to be “logarithmically

confined”.

a > 0 :

If a > 0 the potential aρ2 + bρ4/2 will have a minimum at ρ = 0. Thus ρ will not

acquire a vacuum expectation value. But this means the U(1) symmetry will remain

unbroken. In particular there will be no Goldstone bosons, as mentioned above. Without

vortices this phase is rather uninteresting. However, we do note that since the U(1) global

symmetry is unbroken then φ will remain massive in this phase.

a = 0 :

Provided we tune the other terms in our system properly, we expect to encounter a

phase transition at this point. This is where ρ will begin to acquire a vacuum excitation

value, and where we will start to notice vortices in our theory. Thus our system goes

through a critical point at a = 0, all other terms being tuned appropriately.

Critical Exponents:
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A lot of numerical work has been done by Hasenbush et al. [1] studying the critical

behavior of the three-dimensional XY universality class. Over the course of several years

they studied a number of systems that fall in the 3D XY universality class, both theo-

retically and numerically. Their studies have found that near the critical point, for our

concerns a = 0 as discussed above, the critical exponents of the 3D XY-Model look like

[1]:

ν =0.67155(27)

η =0.0380(4)

α =− 0.0146(8)

γ =1.3177(5)

β =0.3485(2)

δ =4.780(2),

where these critical exponents and their physical significance were all discussed in the

Statistical Field Theory lectures (and of course we only needed ν and η to derive the

rest). Hasenbusch et al. noted that their theoretical and numerical value of α differed

significantly from the experimental value of α = −0.01056(38), obtained by studying the

phase transition of systems that are expected to lie in the 3D XY universality class. For

our purposes these are close enough. We expect the 3D XY-Model to have α that is

negative and around −0.01, fairly close to zero.

There are several things we might observe about these exponents. Perhaps the most

surprising is that α is less than zero, unlike almost all other values of α we encountered in

SFT. But perhaps more fascinating than the values of the exponents is the way in which

they were found. The critical exponents we met in SFT, the above included, were with

reference to temperature. How did we get a temperature out of SXY ? As far as we could

tell the parameter that was controlling our phase transition was a. How is this related

to a critical temperature? Further, how did [1] even go about finding a system that gave

them the correct exponents, and how do they verify that the system they are simulating

is in the 3D XY-Model universality class? If they simulated a system on a lattice, how

can this be derived from the continuum SXY we considered? We will endeavor to at least

touch on all of these questions when we discuss numerics. For now we continue to give

heuristics supporting why we should expect the continuum XY-Model and the Abelian-

Higgs Model to exhibit the same (up to a reversal in the sign of a) transition. It is when

we decide to move beyond heuristics that we will need to return to numerics, and will be

able to address some of these questions.
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2.2. The Abelian-Higgs Model. The Abelian-Higgs model in 2 + 1 dimensions has

action given by

SAH =

∫
d3x

[
−1

4
fµνf

µν + |Dµψ|2 − ã|ψ|2 −
b̃

2
|ψ|4 + · · ·

]
,

where ψ is another complex scalar field, and is coupled to a dynamical gauge field aµ

with strength e. Note that we’ll choose to leave this coupling strength e in the model

to make connection with the numerical simulations undertaken by [2]. Physically the

Abelian-Higgs Model is the low-energy description of a superconductor near its critical

point. The abelian gauge field aµ is identified with the electromagnetic field in the

superconductor, while the complex scalar field ψ is identified with the Cooper pair of

electrons.

Before we launch into a discussion of the phase diagram similar to what we did with

the XY-Model, we will first discuss some unique peculiarities of electrodynamics in 2+1

dimensions. This preliminary discussion will help us introduce a few key elements used

to understand the phase diagram.

Electrodynamics in (2+1)d and a U(1) global symmetry

Recall that in 3 + 1 dimensions the free theory of electromagnetism had two degrees of

freedom, which we called polarizations of the photon. In 2 + 1 dimensions it will have

one less degree of freedom. Thus photons in this theory posses a single polarization state,

and can be described by a real scalar field. We call this scalar field the dual photon, and

will investigate it in the free theory. To do this we employ some handwaving about the

parition function, based largely on [11]. The free theory partition function is given by

Zfree =

∫
Da exp

(
− i

4

∫
d3x fµνf

µν

)
.

Looking at the action in the free theory we note that it is quadratic in f . Thus it would

make our lives slightly easier if we could change our measure from Da to Df . If we

decide to ignore the aµ dependence we will need to be careful about: 1) gauge fixing

problems, and 2) any identities that follow from fµν = ∂µaν − ∂νaµ which we might miss

when we ignore the aµ dependence. Recall that in QFT we added a term of the form

− 1
2ξ

(∂µaµ)2 to the Lagrangian in order to deal with 1). However, this term was mainly

important for properly quantizing the theory, and equaled zero in the MFT anyway. If

we want to ignore difficulties in quantizing, we might be safe ignoring 1) for the moment.

As for 2) the only identity that we need to be careful to preserve is the Bianchi identity

εµνρ∂µfνρ = 0. We can enforce this by using θ as a Lagrange multiplier. Then the free

theory partition function with measure Df instead of Da will be given by,

Zfree =

∫
DθDf exp

(
i

∫
d3x

[
−1

4
fµνf

µν +
e

2π
θεµνρ∂µfνρ

])
.
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We have chosen θ as the name for our Lagrange multiplier for a reason, namely that we

expect it to be 2π-periodic. This will occur if, and only if, the above partition function

is invariant under the transformation θ → θ + 2π. In other words if

Zfree =

∫
DθDf exp

(
i

∫
d3x

[
−1

4
fµνf

µν +
e

2π
θεµνρ∂µfνρ

])
exp

(
i

∫
d3x eεµνρ∂µfνρ

)
=⇒ 1 = exp

(
i

∫
d3x eεµνρ∂µfνρ

)
=⇒ 2π

e
Z 3

∫
d3x εµνρ∂µfνρ.

The requirement that
∫

d3x εµνρ∂µfνρ ∈ (2π/e)Z will in fact be enforced by the Dirac

quantization condition. Physically the Dirac quantization condition ensures that mag-

netic flux must come in quanta with magnitude 2π~/e, where we will be using the units

~ = 1. This can be interpreted topologically. Recall from quantum mechanics that a

particle of charge e will acquire a phase given by γ = e
∮
C
~A · d~x if it traverses the closed

path C with a background gauge field ~A. Using Stoke’s theorem we note γ = e
∫
S
~B · d~S.

In two spatial dimensions ~B · d~S = Bzd
2x = f12d2x. Thus the phase a particle of charge

e will acquire is γ = e
∫

d2x f12. Suppose now that we have an ifinitely thin solenoid

with flux given by an integer multiple of 2π/e, then γ ∈ 2πZ for any surface enclosing

the solenoid. But then eiγ = 1 and traveling around the solenoid won’t be detectable

by our particles of charge e. This means that the ends of the solenoid will look like

two spatially separated magnetic monopoles! Thus even if our theory doesn’t contain

magnetic monopoles, they can be introduced by considering infinitely thin solenoids with

flux quantized by 2π/e. Further, it turns out that 2π/e is the smallest charge a magnetic

monopole could posses in a theory with charge carriers of charge e and still have angular

momentum be properly quantized. We conclude by noting that if we allow infinitely thin

solenoid type solutions for ~A, then we should ensure that magnetic flux comes in integer

multiples of 2π~/e.
We now demonstrate that we should expect

∫
d3x εµνρ∂µfνρ ∈ 2πZ/e if the Dirac

quantization condition is satisfied using one of the terms of this sum below.

eε012

∫
d3x ∂0f12 =e

∫
dt ∂t

(∫
d2x f12

)
=e

∫
dt ∂t

(
2π

e
n(t)

)
by the Dirac quantization condition

=2π(nfinal − ninitial) ∈ 2πZ.

The other terms follow similarily, and ensure that e
∫

d3x εµνρ∂µfνρ ∈ 2πZ is equivalent to

the system obeying the Dirac quantization condition. Here we will choose to enforce the

Dirac quantization condition, as is common in many field theories and as supported by

our discussion above [11]. Thus the partition function will be invariant under θ → θ+ 2π

and we can conclude that θ will be 2π-periodic.

10



Having commented on the periodicity of θ we return to the partition function

Zfree =

∫
DθDf exp

(
i

∫
d3x

[
−1

4
fµνf

µν +
e

2π
θεµνρ∂µfνρ

])
in an attempt to integrate out the more complicated fµν terms. Since this action is

quadratic in fµν we know from SFT that if we integrate out fµν it will be identical to

simply setting fµν equal to the value it would obtain in MFT. This value is given by its

equation of motion derived from the above, which is

0 = ∂µ
δL

δ(∂µf νρ)
− δL
δ(f νρ)

=
e

2π
εµνρ(∂µθ) +

1

2
f νρ,

so f νρ will have equation of motion f νρ = eεµνρ(∂µθ)/π. Here’s the single degree of

freedom we mentioned! It turns out that the 2π-periodic θ will function as our dual

photon.

As an aside note that this was only possible in (2 + 1)d since the Bianchi identity in

(3 + 1)d cannot be written with εµνρ, indeed this tensor with three indices only makes

sense in (2 + 1)d. Instead to enforce the Bianchi identity in (3 + 1)d we will need a

Lagrange multiplier that itself has an index, i.e. a Lagrange multiplier that functions as

a dual gauge field. Working this out will give us back the familiar two polarizations of

the photon.

Having gained the insight that θ is the dual photon in (2 + 1)d dimensions, and is

periodic, we can substitute fµν with its equation of motion back into the free action.

This will give us

Zfree =

∫
Dθ exp

(
i

∫
d3x

[
− e2

4π2
εµνρε

µνρ′(∂ρθ)(∂ρ′θ) +
e2

2π2
θενρµενρµ′∂µ∂

µ′θ

])
=

∫
Dθ exp

(
i

∫
d3x

[
− e2

2π2
(∂µθ)

2 +
e2

π2
θ∂2θ

])
=

∫
Dθ exp

(
−i
∫

d3x
3e2

2π2
(∂µθ)

2

)
.

This free action looks a lot more straightforward than the original free action. In fact

there is an obvious symmetry θ → θ + const. Since θ is 2π-periodic this constant will be

an element of S1. Thus this will be a U(1) global symmetry, since U(1) is isomorphic to

the circle group.

The U(1) symmetry will have current given by

jµ =
δL

δ(∂µθ)
=
e2

π2
∂µθ,

where we have removed the factor of 3/2 for clarity. Using the equation of motion for f

again, we can rewrite this as

jµ =
e

2π
εµνρfνρ.
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But then the conservation of this current is just the Bianchi identity in (2 + 1)d! Clearly

this will be a symmetry of the free theory. But by the definition of fµν = ∂µaν−∂νaµ the

Bianchi identity is trivially satisfied for the full Abelian-Higgs Model as well. Thus the

U(1) global symmetry of the free theory will be a global symmetry for the interacting

Abelian-Higgs Model also.

Before we go on to a discussion of the phase diagram let’s summarize. Using the free

theory we have shown that electrodynamics in (2+1)d is characterized by a single degree

of freedom, the dual photon θ. This dual photon is 2π-periodic, provided we assume

the Dirac quantization condition, which we will. Finally, the full Abelian-Higgs Model

posesses a U(1) global symmetry that can be thought of either as enforcing the Bianchi

identity or as shifting the value of the dual photon by a constant. We now use all these

facts to explore the phase diagram.

ã < 0 :

In the ã < 0 phase ψ will acquire a vacuum expectation value, just as φ acquired a

vacuum expectation value in the a < 0 of the XY-Model. This will break the U(1) gauge

symmetry ψ → eiα(x)ψ and aµ → aµ + 1
e
∂µα(x) that the Abelian-Higgs Model posseses.

Just as the breaking of the U(1) global symmetry of the XY-Model led to vortices in its

a < 0 phase, so will the breaking of the U(1) gauge symmetry give rise to vortex solutions

in this phase. However, these vortices will be rather different animals than the vortices we

saw in the XY-Model. We’ll see that their energy won’t diverge logarithmically as it did

for the vortices in the XY-Model. Further the vortices will carry a quantized magnetic

flux.

Before we can show these differences we will need to find what parameter’s winding

actually defines the Abelian-Higgs vortices. To do this we make the redefinition ψ = ρeiσ.

Then we can expand to covariant derivative

|Dµψ|2 =(∂µ − ieaµ)ψ(∂µ + ieaµ)ψ∗

=|∂µψ|2 − ieaµ(ψ∂µψ∗ − ψ∗∂µψ) + e2(aµ)2|ψ|2

=(∂µρ)2 + ρ2(∂µσ)2 − eaµ(2ρ2∂µσ) + e2(aµ)2ρ2

=(∂µρ)2 + ρ2(∂µσ − eaµ)2

=⇒ LAH =− 1

4
fµνf

µν + (∂µρ)2 + ρ2(∂µσ − eaµ)2 − ãρ2 − b̃

2
ρ4 + · · · ,

where the substitution ψ = ρeiσ was straightforward given that we did more or less the

same calculation for the XY-Model. Note that the U(1) gauge symmetry σ → σ + α(x)

and aµ → aµ + 1
e
∂µα(x) is very clear in this form. It will turn out that the vortices in

this phase are given by the winding of σ.

The fact that ∂µσ and eaµ are packaged together in the same term should give us some

hint that these vortices might pick up magnetic flux. To see this more explicitly let’s look

12



at the equation of motion for aµ

0 =− ∂µfµν − (−e)2ρ2(∂νσ − eaν).

Recall from electromagnetism that ∂µf
µν = Jν , where we’ve used an uppercase J to

distinguish the electromagnetic current from the U(1) global current jµ = (eεµνρfνρ)/2π.

Let’s consider the case where there’s no externally imposed current Jν = 0. Then the

above equation reveals that ∂µσ = eaµ whenever ρ 6= 0. This relation is what will give

the vortices a quantized magnetic flux. Just as with the vortices of the XY-Model we

note that

2πZ 3
∮
∂iσ dxi for topological reasons

=e

∮
ai dxi for i = 1, 2 by e.o.m.

=e

∫
S

(∂1a2 − ∂2a1) d2x by Stokes

=e

∫
S

f12 d2x.

Thus in this phase the Dirac quantization condition will in fact fall neatly out of the fact

that the winding number of a vortex must be an integer! This relationship also allows us

to see that a vortex with winding number n will posses magnetic flux 2πn/e.

Next we want to check the energy of a single vortex. We will consider a static vortex

situated at the origin. If it has winding number n, then by analogy with the vortices

in the XY-Model σ(r, ϑ) = nϑ. We will further choose to work in the Lorenz gauge

∂µa
µ = 0. Then the equation of motion for aµ becomes ∂2aµ = 2eρ2(∂µσ − eaµ). Since

∂µσ = (n/r)~eϑ then we can try the ansatz aµ = (g(r)/r)~eϑ which we note does in fact

satisfy the Lorenz gauge condition. With these substitutions the equation of motion

reduces to
d2g

dr2
− 1

r

dg

dr
= 2eρ2(n− eg(r)).

We could try to choose g(r) = n/e, which would satisfy the above equation. But then

∂µσ = eaµ and we can see directly from the above integrals that this will give rise to

f12 = |~∇ × ~a| = |~∇ × n/(er)~eϑ| = (2πn/e)δ(2)(~r). Having a δ function flux might lead

to some problems with the energy. Thus we follow the lead of Nielsen and Olesen [8]

and take the boundary condition g(∞) = n/e and g(0) = 0. With this choice we will

eliminate the divergence of fµν at the origin.

Next, just as with the vortices in the XY-Model, we will need ρ(0) = 0 to eliminate

problems with the multivaluedness of σ there. However, again just as with the XY-Model

ρ will quickly interpolate from a value of zero at the center of the magnetic flux vortex to

ρ0 outside the vortex. We will call this interpolation length l as we did for the XY-Model.

For r � l the ρ2 factor in the equation of motion will then become just ρ2
0. It can then

be checked by subsitution that g(r) = n/e+ c
√
re−

√
2eρ0r for c some constant satisfies the

13



equation of motion to order O(r−3/2e−
√

2eρ0r), provided r � l so ρ = ρ0. Looking at the

exponential reveals that this will therefore be a valid description of g(r) for r � 1/(eρ0).

Just as l represents the distance required for the density to reach its value at infinity,

1/(eρ0) represents the distance for the vector potential to reach its value at infinity. We

will call ξ := max(l, 1/(eρ0)) the core size of the vortex, since both the density and vector

potential cores will be contained within ξ.

Having discussed some of the properties of the vortex solutions, we now want to find

their energy. This means that we will need to find the energy momentum tensor for the

Abelian-Higgs Model.

T µνAH =2
δLAH
δgµν

∣∣∣∣
g=η

− ηµνLAH

=2(∂µρ)(∂νρ) + 2ρ2(∂µσ − eaµ)(∂νσ − eaν) + fµλf ν
λ − ηµνLAH ,

where the variation of fαβf
αβ with respect to the metric is a standard result from elec-

tromagnetism. Since we are considering a static vortex and a0 = 0 the energy density

becomes:

T 00
AH =− η00LAH

=
1

4
fµνf

µν + |~∇ρ|2 + ρ2|~∇σ − e~a|2 + ãρ2 +
b̃

2
ρ4 + · · ·

=
1

2
(f12)2 +

ρ2

r2
(n− eg(r))2 + |~∇ρ|2 + ãρ2 +

b̃

2
ρ4 + · · ·

=
1

2r2

(
dg

dr

)2

+
ρ2

r2
(n− eg(r))2 + ρ terms,

where used the fact that f12 = |~∇× ~a| = g′/r. As with the XY-Model we note that for

r � ξ the ρ terms will be negligible. Then

E =Ecore + 2π

∫ ∞
ξ

[
1

2r2

(
dg

dr

)2

+
ρ2

0

r2
(n− eg(r))2

]
rdr.

But we saw above that g(r) = n/e+ c
√
re−

√
2eρ0r for r � ξ. Then the integrand will just

look like e2ρ2
0r
−1e−r/ξ, which indeed has a finite integral. Since we were very careful in

choosing g(0) = 0, there won’t be any divergences near the origin and thus Ecore will be

finite as well.

The key to the magnetic flux vortex having finite energy is the same thing that gave

it magnetic flux in the first place; the fact that ∂µσ and eaµ are packaged together in

the same term. In the XY-Model the energy looked like ρ2
0|~∇θ|2 outside the vortex core.

This meant that the n/r dependence of ~∇θ was unable to be canceled by anything, and

caused the energy to diverge at long distances. In the Abelian-Higgs Model the energy

looks like ρ2
0|~∇σ− e~a|2 outside the vortex core. Thus even though ~∇σ still has a harmful

n/r dependence, we can cancel that by taking ~a = n/(re)~eϑ at large r. This takes care
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of the divergent part of the energy, and leads to the Abelian-Higgs vortices having finite

energy.

Having very thoroughly investigated the breaking of the U(1) gauge symmetry, we

might wonder what happens to the U(1) global symmetry in this phase. We know that

the photon will become massive because of the e2ρ2
0aµa

µ term that appears. Then the

massiveness of aµ means that all excitations will be gapped. But this means that there

is no need to choose a vacuum expectation value for the dual photon θ. Thus the U(1)

global symmetry will remain unbroken in this phase.

ã > 0 :

In this phase the ψ fields will be massive and the U(1) gauge symmetry will remain

unbroken. This means that the photons will remain massless. Then our theory becomes

gapless, and a vacuum expectation value will need to be chosen for the dual photon θ.

Consequently the U(1) global symmetry is spontaneously broken in this phase. The dual

photon is precisely the Goldstone mode of this broken symmetry since the photon will

remains massless. Note that the dual photon current jµ = (e2/π2)∂µθ bears a striking

similarity to the global U(1) symmetry current jµ ∝ ρ2
0∂

µθ + O(ρ̃) of the XY-Model’s

a < 0 phase.

We can make a further comment about the massive ψ fields. Any elementary ψ exci-

tation will describe a particle with charge ±e. In the MFT these particles will interact

via Maxwell’s equations in (2 + 1)d. This calculation is identical to the familiar one for

QED, just with scalars instead of fermions. In particular, in the static case the particles

will interact via the Coulomb force in two spatial dimensions. We’ve already noted in

the a < 0 phase of the XY-Model that the Coulomb force in two spatial dimensions leads

naturally to logarithmic confinement. The calculation here will be no different, except in

this case the electric field will arise naturally and won’t need to be introduced by a field

transformation as with the XY-Model. Thus massive ψ particles of opposite charge will

be logarithmically confined, just as the vortices in the a < 0 phase of the XY-Model.

ã = 0 :

Again we should expect a critical point to occur as we pass through ã = 0. Numerical

simulations show that this is the same quantum critical point as exists in the XY-Model

[2], [11]. We will soon turn our attention to demonstrating this fact ourselves, but first

we want to summarize the similarities between the models in a handy table.

2.3. Comparison. This table is meant to make comparison between the models easy.

The key insight that allowed us to make this comparison in the first place is that the

two models share a global U(1) symmetry. In particular, in both models the current of
15



this global U(1) symmetry has the form jµ ∝ ∂µθ, where θ is some 2π-periodic real field.

Matching the broken and unbroken phases of this nearly shared U(1) global symmetry

allows the similarities to become manifest.

XY-Model Abelian-Higgs Model

Broken global U(1) symmetry phase

a < 0 ã > 0

2π-periodic Goldstone modes θ 2π-periodic Goldstone modes θ

Vortices described by winding of θ Particles given by ψ, charged

In MFT vortices interact via Coulomb force

in 2d

In MFT particles interact via Coulomb

force in 2d

Vortices of opposite charge/sign are

logarithmically confined

Particles of opposite charge are

logarithmically confined

Unbroken global U(1) phase

a > 0 ã < 0

Particles described by field φ Vortices by winding of σ

Particles have a finite mass
Vortices have a finite energy (mass in rest

frame)

As a small note we’ve ignored the U(1) gauge symmetry of the Abelian-Higgs Model.

This shouldn’t worry us too much because it merely described a redundancy in the model

and not anything physical.

At any rate, the descriptions of the phases above look very similar if we assume that

ã ∼ −a, and that vortices and particles of the opposing theories match to each other.

Indeed the vortices of the XY-Model seem to have the same interaction as the particles

of the Abelian-Higgs Model, and vice versa, in the appropriate phase. However, this was

all heuristic. We could have been much more rigorous and taken more time with the

interactions beyond the fourth order. This is attempted for example in [9], and can be

taken further in supersymmetric theories [11]. One other thing that we didn’t take time

to verify was that the critical exponents of the Abelian-Higgs Model near the critical

point ã = 0 are actually the same as those of the XY-Model near the critical point a = 0,

or that the Abelian-Higgs Model in fact goes through an inverted XY-type transition.

We are interested in showing this for ourselves, since verifying that the models lie in the

same universality class at the critical point would provide solid evidence to suggest that

they are the equivalent away from the critical point. As such we dive right into numerics,

using the Ising Model as our introduction.

16



3. Numerics

3.1. Introduction: Metropolis and the Ising Model. In the discussion of the critical

exponents of the XY-Model we promised to discuss how we could go from a continuum

field theory to one that was amenable to numerical analysis. Before we do that we must

first establish how we can possibly use numerical analysis to analyze field theories. This

introduction is motivated largely by Kardar [4].

The first principle of numerical analysis is that it is often easier and computationally

cheaper to work with real numbers. As such we will firstly consider field theories in the

SFT perspective to get rid of the prefactors of i. Recall we can just Wick rotate to take

a QFT to a SFT, so this shouldn’t lose us any generality. Secondly, we are primarily

interested in computing the expectation values of certain operators, e.g.

〈O〉 =
1

Z

∫
Dφ O(φ, ∂µφ, . . .) e

−βF (φ,∂µφ,...),

for the case of a real scalar field. This seems hard. Let’s start brainstorming how we

might even attempt such an integral. Perhaps näıvely we could try to do this like we

might a (simple) numerical integral. We could pick a discrete number of possible field

configurations φi and sum O(φ, . . .)e−βF (φ,...)/Z over these discrete configurations. But

the space of all possible configurations is enormous, and in the above case it is infinite

dimensional! How can we even hope to choose a representative collection with only finitely

many choices?

A better approach would be to forget the integral, and recall that we are looking to

take an expectation value. Let P (φ) = e−βF (φ,...)/Z be the probability distribution for

configurations. Now draw a representative sample of configurations Cn = {φi | 1 ≤ i ≤ n}
that are distributed according to P , i.e. if P (φj) is small then φj will be less likely to show

up in our representative sample. Then our expectation value should be approximated by

the mean according to this representative sample,

〈O〉 ≈ 1

|Cn|
∑
φi∈Cn

O(φi).

Thus if we can find an algorithm that takes P (φ) and gives us our representative sample,

Cn, we will be able to actually compute these expectation values. In fact, since we likely

won’t know Z explicitly, we would prefer to find an algorithm that just takes e−βF (φ,...)

and gives us Cn. Thankfully the Metropolis algorithm does exactly this.

Metropolis algorithm

Having established the kind of question that we would like the Metropolis algorithm

to resolve, we will endeavor to provide an introduction to the algorithm and its typical

uses in statistical physics. For this introduction we will consider the Ising model, as it

provides the simplest introduction to many of these concepts. The model has free energy
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given by

F ({s}) = −J
∑
〈ij〉

sisj,

where the sum is over nearest neighbor pairs on a lattice and where si = +1 or −1 for

every site. We describe how the Metropolis algorithm works for the Ising model, and show

the progression of a typical Ising state under the model. Then we move to a discussion of

equilibration. We will use our equilibrated states to numerically find two of the critical

exponents of the Ising model. All of these ideas will be useful when we move to the much

more complicated task of finding the critical exponents of the Abelian-Higgs Model.

We will henceforth restrict ourselves to systems where the space of possible configura-

tions is finite but large, as do [1] (XY Model), [2] (Abelian-Higgs Model), and [4] (spin

models). For the Ising model this means making our lattice finite, but periodic. Then

the space of possible configurations has size 2N , where N is the number of lattice sites;

large, but not infinite. The Metropolis algorithm then proceeds as follows for the simple

case of the Ising model.

Metropolis algorithm: Ising Model

1. Choose an initial state {s} drawn from a uniform distribution. That is to say, for

each site assign it a value +1 or −1 with probability 1/2, regardless of the values

at the neighboring sites.

2. Next pick a site k at random. If the lattice is N × N , then k = (i, j) and this

can be done by choosing two random numbers i and j between 1 and N from a

uniform distribution.

3. Now flip the spin at the site k, si,j → −si,j, and calculate the free energy change

∆F = F ({s}final)− F ({s}initial). For the 2d Ising model this is a very fast calcu-

lation, since

∆F = 2Jsi,j(si+1,j + si−1,j + si,j+1 + si,j−1)

depends only on k = (i, j)’s nearest neighbors. Note that i ± 1 and j ± 1 are all

taken mod N , as the lattice is taken to be periodic.

(i) If ∆F is less than zero, keep the flipped spin at k.

(ii) If ∆F > 0, then choose a random number u from a uniform distribution

between 0 and 1. If u < e−β∆F then keep the flipped spin. If e−β∆F ≤ u then

flip the spin again, taking it back to its original state.

4. Return to step 2 and pick a new site. If this has been done the appropriate number

of times, we can exit here.

Note that step 3 is where the action happens, and it appears to be fairly intuitive. If

changing the spin would lower the energy, then it makes sense that most systems will

choose to do this. If most systems would choose to do this, then they should be more

probable according to the Boltzmann distribution, and so we should be getting close to

a representative state. Further, the noise in step 3 (ii) is governed by the temperature
18



(a) Step number = 0 (b) Step number = 256 (c) Step number = 1024

Figure 2. Generic simulation of Ising model at T = 1.4, system equili-
brates using Metropolis algorithm, starting from random intial state.

of the system and the size of the jump. If the temperature is very small these thermal

changes will be unlikely, and the system will simply move towards a state of minimum

energy. However, with larger temperature this step will introduce a lot of noise into

the system. Again this agrees with our understanding of a system’s temperature. For

a more explicit proof that the Metropolis algorithm will produce representative states,

see Kardar [4]. The proof relies mainly on linear algebra and the principle of detailed

balance, as discussed in Lent term’s Theoretical Physics of Soft Condensed Matter. It is

not hard, but slightly beyond the scope of this essay.

Instead of proving that the Metropolis algorithm works, let’s show it. We’ll implement

it for the Ising model in python. This is more or less straightforward using the above

algorithm, so I won’t provide much more detail. However, if the reader wants to read

or run my code for themselves they can find it listed as ising_time_series.py at my

GitHub repository [6]. It was inspired in part by [10], as well as [4].

Figure 2 shows an example simulation at T = 1.4. Since calculation of ∆F is very fast

for the Ising model, running the simulation for this figure only took around 5 minutes

on my laptop. It could likely be optimized further as per [10], but for the purposes of

introducing the Metropolis algorithm this should be good enough.

From the discussions in SFT we expect the critical temperature of the Ising model to

be roughly Tc = 2.27 in our dimensionless units, where kB = 1. Thus at a temperature

of T = 1.4 < Tc we should expect to see the system developing domains with a small

amount of noise. This is exactly what we see in Figure 2. The random initial state

quickly turns into some rather complicated domains, which take a relatively longer time

to coarsen and smooth out. At this step number we expect that the system will have

reached a representative state, i.e. that it will be in a state {s} with high probability

e−βF ({s})/Z. We call the time it takes for a state to go from the totally random starting

point to a representative state the equilibration time τeq.

As an aside, “time” here simply refers to the number of steps taken by our Metropolis

algorithm. There is no physical mechanism arising from F ({s}) that sets a time scale.
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If we wanted to assume that the system relaxes in an overdamped way towards its equi-

librium state then we could write a stochastic PDE that would produce this. This is

known as the Langevin equation and was discussed in Theoretical Physics of Soft Con-

densed Matter. It often produces coarsening dyanmics that are closer to what is seen in

physical systems. To make our simulations behave more like this we can try to modify

our Metropolis algorithm by using Langevin dynamics to propose new states (instead of

choosing them randomly), and then using the Metropolis step to accept or reject them.

This combination is known as the Metropolis-adjusted Langevin algorithm.

Critical Exponents

Despite the aside, for the moment we’re not particularly interested in the way that

our system gets to equilibrium. It could arrive at equilibrium in an unphysical seeming

way, and this wouldn’t bother us. We only care about what it does when it reaches

equilibrium. This is because we’re trying to get a representative sample of states and

states at equilibrium are more likely. Thus we will gloss over some possible improvements,

and simply compute any statistics of the model after states have equilibrated for an

equilibration time τeq. We provide an algorithmic description of how this might work for

computing the critical exponents α and β. In order to compute these we will need to

determine the behavior of the specific heat, CV (T ), and magnetization, |〈M〉|(T ), near

the critical temperature Tc.

Note that the algorithm below is less general than the more generic Metropolis algo-

rithm, and essentially serves as a pseudocode description of ising_crit_exp.py found

at my GitHub repository [6].

Critical Exponents: Ising Model

1. Choose a set of parameters; fix the size of the simulations to be tested and the

number of temperature values to test. To avoid finite size effects larger simulation

sizes are better, but small simulation sizes can often give instructive results. I

chose an 8 × 8 system size. Since the critical temperature for the Ising Model is

Tc = 2.27 we should cluster temperature values around Tc for better fits, as this

is where we expect our quantities to diverge.

2. Pick a single temperature value T and choose a new random initial state, as in the

Metropolis algorithm. Additionally create empty arrays Garray and Marray with

length τcalc. I have chosen τcalc = 210.

(i) Equilibrate the random intial state by applying the Metropolis algorithm a

number of times τeq. If the lattice is N×N each application will allow for N2

spin flips. Unfortunately the time for the states to equilibrate is temperature

dependent, τeq = τeq(T ), and diverges near Tc for an infinite system. Thank-

fully for a finite system finite size effects will stop this divergence. We will
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discuss this later, but as an ad hoc solution I chose τeq(T ) = τ
2−2.269

|T−Tc|
Tc

0

with τ0 = 29. This way at Tc the equilibration time is much longer, 218.

(a) Once the system has been equilibrated we assume that it is a repre-

sentative state {s}i. Having reached such a state, we now measure

the quantities we care about. For us this will be Gi := βF ({s}i) and

Mi := M({s}i), the magnetization. Add the measured values to the

arrays we created Garray = (G1, G2, . . .) and Marray = (M1,M2, . . .).

(b) Having obtained a representative state after equilibration, we apply the

Metropolis algorithm once more. Since we started from a representative

state, we assume this application will take us to another representative

state {s}i+1. It is likely to be correlated slightly with {s}i, but we

expect that if we do this enough times that correlation will disappear

[4].

(c) Having found the next equilibrated state, return to (a) and compute

the quantities of interest. Continue through the loop of (a)-(c) for a

number of times τcalc until we have sampled our quantities of interest

in sufficiently many representative states, and have totally filled Garray

and Marray.

(ii) Now compute the specific heat CV = β2〈F 2〉− β2〈F 〉2 ≈ G2
array−Garray

2
and

the magnetization 〈M〉 ≈Marray for this temperature value.

3. Return to step 2 and choose the next temperature value. Exit this loop when we

have computed CV and 〈M〉 for all temperature values.

A few comments on the algorithm. To have truly representative states in our arrays

Garray and Marray we might want to start G1 and M1 in a different random state than

G2 and M2. Then we would equilibrate both states, reaching two truly uncorrelated

representative states, where we would then measure the quantities. This undoes any

correlation between G1 and G2, since they are no longer separated by only a single

Metropolis algorithm move. However, it would be prohibitively computationally costly

to equilibrate τcalc = 210 systems for every temperature value, instead of only a single

system. Thus we trust that if we apply steps 2(a)-2(c) enough times, we will get an

appropriate average in 2(ii) [4].

Secondly, we could try to optimize our algorithm by lessening the temperature depen-

dence of τeq. The reason it diverges near Tc is because τeq ∼ ξz, with z some positive

exponent that depends on the algorithm used [7]. Thus as ξ diverges near the critical

temperature, so does τeq. This makes some sense. Near the critical temperature spins

begin to cluster together in chains that can extend across the whole simulation, since the

characteristic length ξ is headed to infinity. These clusters are hard to change through

the local updates that the Metropolis algorithm makes, so it stands to reason that it

would take a lot more time to equilibrate the system. To try to lessen this dependence
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(a) Fit demonstrating α ' 0. (b) Fit demonstrating β ' 0.125

Figure 3. Scan of temperature axis for 8 × 8 Ising Model. Fits demon-
strate that the critical exponents can be approximately determined, even
for such a small system size. Using the value of Tc from each we can average
to determine that Tc = 2.260± 0.008 (J/kB).

we might try to make an algorithm that flipped whole clusters at a time, instead of just

flipping a single site like the Metropolis algorithm. For the Ising model these are known

as cluster algorithms, the most famous being the Wolff algorithm. Indeed for the Ising

model the Wolff algorithm almost entirely removes the temperature dependence of τeq [7].

However, the Wolff algorithm was designed to solve this specific problem for magnetic

spin simulations, and so it lacks the generality of the Metropolis algorithm. As such we

will stick to the Metropolis algorithm for this paper, since we will be applying it to the

Abelian-Higgs Model which is not a magnetic spin type model.

Having commented on the algorithm for determining CV (T ) and |〈M〉|(T ) near T = Tc

and discussed possible improvements, it is now time to actually simulate it. We can see

this in Figure 3, where the points are plotted. Note that the magnetization in (B) is a

little noisy, this is likely because the simulation size was the relatively small 8 × 8 size.

Though the specific heat is more clean, both plots are fairly amenable to fitting.

The fitting for the plots was done using ising_fits.py in my GitHub repository [6].

Since this fitting just used a standard python library for nonlinear fitting I will skip the

details and just discuss the results of the fits. Previous studies have found that α = 0

with a log divergence for the Ising model in two dimensions; we discussed this in SFT

[12]. Thus following the lead of Halperin [2] we tried to fit the specific heat near Tc to

CV (T ) = −A ln

∣∣∣∣T − TcTc

∣∣∣∣− 1

2
DAsgn

(
T − Tc
Tc

)
+B.

This fit was pretty good, as we can see in Figure 3(A). It leads us to believe that our

Metropolis algorithm for the Ising model was correct and that Tc ≈ 2.25. Fitting |〈M〉|
near the critical point gives us that β = 0.13± 0.02. Thus though this fit is rather crude
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we see that the literature value of β = 1/8 is within our errorbars [12]. Finally, averaging

the fitted value of Tc from both fits gives us that Tc = 2.260±0.008 (J/kB). The literature

value Tc = 2.269 is nearly within a single errorbar. Thus though our system size was

small and we used the Metropolis algorithm instead of the more refined Wolff algorithm,

we still got fairly accurate fits for α, β, and Tc. We therefore conclude our introduction

to numerics using the Metropolis algorithm and the Ising Model.

3.2. Numerics for a continuum QFT. Having understood how to extract the critical

exponents from a statistical field theory that has finitely many states, we now want

to understand how to extract the critical exponents from a quantum field theory with

infinitely many possible states. Since our aim is to find critical exponents of the Abelian-

Higgs Model, we will use this as our example. Recall that its partition function is given

by

ZAH(e, ã) =

∫
DaDρDσ eiSAH

SAH =

∫
d3x

[
−1

4
fµνf

µν + (∂µρ)2 + ρ2(∂µσ − eaµ)2 − ãρ2 − b̃

2
ρ4 + · · ·

]
Note that we have ignored any possible gauge fixing term, and that we have made the

substitution ψ = ρeiσ. Especially in the resulting numerics having real variables will make

our lives much easier. There still remains a factor of i in the exponent, which would cause

difficulties if we tried to apply the Metropolis algorithm. Indeed the Metropolis step in

this form would involve asking whether or not a random variable u ∈ [0, 1] is less than

or equal to the complex ei∆SAH , clearly not well defined. As such we will first need to

understand what happens when we Wick rotate. This is covered very well using the

illustrative example of quantum mechanics in pages of 148-150 of Tong’s quantum Hall

effect notes [11]. I can’t really improve on the exposition there so I won’t reproduce it

here. The main takeaway is that if you take a QFT living on Minkowski space R1,d−1 and

consider its Euclidean path integral formulated on S1×Rd−1 with periodic time τ ∈ [0, β),

then this will give you its thermal partition function. One needs to keep track of signs in

the fermionic case, but this isn’t a problem for our theory.

Continuum Abelian-Higgs to Lattice Superconductor Model (LSM)

To Wick rotate and obtain the Euclidean path integral we define y1 = it, y2 = x1, and

y3 = x2. The vectors ~y will live in S1 × R2. Then (∂µρ)(∂µρ) = (∂tρ)2 −
∑

i=1,2(∂xiρ
2) =

−|~∇ρ|2, where the gradient is understood to be in the ~y variable. The gauge field will

also need to be transformed. Define Ai to be the new gauge field and relabel its indices

to be manifestly spatial. This means (A1, A2, A3) = (ia0, a1, a2) given our redefined time
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coordinate. Then f0i = i(∂1Ai+1 − ∂i+1A1) and we can deduce that

fµνf
µν =2[(f01)2 + (f02)2 − (f12)2]

=− 2[(∂1A2 − ∂2A1)2 + (∂1A3 − ∂3A1)2 + (∂2A3 − ∂2A3)2]

=− 2|~∇× ~A|2,

where again the gradient is understood to be in the ~y variable. With this change the

path integral becomes

ZAH(e, β) =

∫
DADρDσ e−SE

SE =

∫
d3y

[
1

2
|~∇× ~A|2 + |~∇ρ|2 + ρ2|~∇σ − e ~A|2 + ãρ2 +

b̃

2
ρ4 + · · ·

]
,

where the coordinate y1 will be β-periodic. Just as with the Ising model we’ll now choose

to make the spatial coordinates periodic, so that ~y ∈ (S1)3. We’re now going to make

some manipulations to bring the model more in line with the three-dimensional lattice

superconductor model (LSM) studied by Halperin in [2].

Suppose that we are in the ã < 0 phase with its accompanying magnetic flux vortices.

Then ρ = ρ0 + ρ̃ with ρ2
0 = −ã/b̃. We can check that up to a constant term the potential

ãρ2 + b̃ρ4/2 = b̃(ρ2 − ρ2
0)2/2 by expansion. But now suppose that we send b̃→∞. Then

exciting modes where ρ2 differs from ρ2
0 will cost an infinite amount of energy, b̃(ρ2−ρ2

0)/2,

since ρ2
0 6= ρ2. This will effectively “freeze out” fluctuations in the radial part of ψ and

thus fix ρ = ρ0. The Euclidean action for this frozen Abelian-Higgs Model then becomes:

SE =

∫
d3y

[
1

2
|~∇× ~A|2 + ρ2

0|~∇σ − e ~A|2
]
.

Note that since ρ2
0 = −ã/b̃ and we have sent b̃ → ∞, then to keep ρ2

0 nonzero we will

need to choose ã to be a very large negative value. This frozen Abelian-Higgs Model is

the continuum version of the LSM studied by Halperin, where he assumes that ρ2
0 = β/2

[2].

Here is where we really get into the question raised in our discussion of the critical

exponents of the XY-Model; where did the temperature come from? It turns out it was

lurking in ρ2
0 ∝ ã all along. We know that the critical point for the Abelian-Higgs Model

should occur when ã = 0. Thus if we assume that ã = ã(T ), as was µ2 in the Ising

model studied in SFT [12], we should have that ã(Tc) = 0. In particular we might make

the assumption that the scaling will be linear, i.e. ã ∝ Tc − T as in the Ising model in

SFT. Then ρ2
0 ∝ (T − Tc)/b̃. Since b̃ will be going to infinity this will be going to zero,

and so we will need to choose T to be a large temperature value. But then as b̃ goes

to infinity ρ2
0 will becomes small like β = 1/T . This slightly dubious reasoning provides

some justification for Halperin choosing ρ2
0 = β/2.
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At smaller values of T we might expect

ZLSM(e, β) =

∫
DADσ exp

(
−
∫

d3y

[
1

2
|~∇× ~A|2 +

1

2
β|~∇σ − e ~A|2

])
to lie in the same universality class as the full ZAH(e, β). This is because we expect it to

be identical to ZAH(e, β) with radial oscillations frozen out and with large T .

The next big question to answer is how we can discretize the following partition function

and stay in the same universality class. The answer is relatively simple, though there is

one important change we must make! To discretize we simply define a periodic N×N×N
cubic lattice, discretizing space. Let’s label the points on this lattice with tuples (i, j, k) ∈
{1, 2, . . . , N}3. We then simply assign a value for σ on each lattice site, i.e. σi,j,k. The

natural discretization of the vector valued real field ~A will likewise be just to assign it a

value on each lattice site, ~Ai,j,k. Since it will have three components we can also think

of this as defining it on directed links between adjacent sites [2]. Finally the discretized
~∇ will just be taken to be the lattice derivative, i.e. ∇1σi,j,k = σ(i+1),j,k − σi,j,k. This

is all fairly straightforward, and will nearly reproduce the same LSM written down by

Halperin as equation (1) in [2]:

ZLSM(e, β) =

∫ π

−π

dσj
2π

∫ ∞
−∞

d[ ~Aj]
∞∑

[~nj ]=−∞

exp

(
−

N3∑
j=1

[
1

2
|~∇× ~Aj|2 +

1

2
β|~∇σj − 2π~nj − e ~Aj|2

])
.

Note that apart from the natural discretization the only thing to have changed is the

addition of the 2π~n term, where ~n ∈ Z3. This isn’t actually a fundamentally new field at

all, it just addresses an issue that arose from discretization. Essentially this term serves to

preserve the delicate topological concept of winding number that would have otherwise

been destroyed by the rough discretization process. We will illustrate this as follows.

Consider a vortex in the original Abelian-Higgs Model. It is a point in the two spatial

dimensions of the model, but it also moves through time. Thus it will form a vortex

line in the (2 + 1)d spacetime dimensions of the Abelian-Higgs Model. In the same way

we expect that our Euclideanized and discretized theory will also contain vortex lines.

Suppose now there is a vortex line of winding number +1 passing through (1/2, 1/2, 0).

Now define the path C to be (0, 0, 0)→ (1, 0, 0)→ (1, 1, 0)→ (0, 1, 0)→ (0, 0, 0). In the

continuum theory we know that ∮
d~x · ~∇σ = 2π(+1)

from the winding number. But if we discretize then∮
d~x · ~∇σ = ~∇1σ000 + ~∇2σ100 − ~∇1σ110 − ~∇2σ010 = 0,

expanding out the lattice derivatives using our tuple notation. However, it is clear that

2π
∮

d~x · ~n ∈ 2πZ for ~n ∈ Z3. Thus when we discretize we need to pass from ~∇σ to
~∇σj − 2π~nj in order to allow for vortices of arbitrary circulation between lattice points.
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With some thought it should become clear that there are no other restrictions we can

make on ~n besides it being integer.

Simulation of LSM

We’ve now gone most of the way to obtaining a SFT that we expect to be in the

same universality class as the Abelian-Higgs Model, and that we can actually simulate.

However, we follow Halperin in making a few modifications to the LSM in order to make

something slightly easier to simulate. Firstly, instead of having σ take any real value

in [−π, π) we will choose a discrete variable that can take 100 evenly spaced values in

[−π, π). This will help keep our state space to a reasonable size. Now suppose we wanted

to discretize the interval of values that ~A takes. Clearly we cannot do this, since it can

take any value in the reals. In order to deal with this problem Halperin [2] decided to

simulate a model that is dual to the LSM. We will give a heuristic derivation of the model,

though Peskin [9] showed it more rigorously.

Since only ~n appears in ZLSM and not its derivatives, then its equation of motion will be

given by ~∇σj−2π~nj− e ~Aj = 0. Solving this for ~Aj reveals that ~Aj = (~∇σj−2π~nj)/e. In

order to subsitute this back into the equation of motion we will need to compute ~∇× ~Aj.

This would have been a problem in the continuum theory, since if there there were vortices

then ~∇× ~∇σ would have diverged at the vortex core. However, on the lattice this term

will simply vanish as we have demonstrated above. Then ~∇× ~Aj = −(2π/e)~∇×~nj. The

discretized action then becomes

SE ∼
N3∑
j=1

1

2

4π2

e2
|~∇× ~nj|2 +

1

2
β|~∇σj − 2π~nj|2.

In spite of replacing ~A in the first term, we will keep the second term to make sure the

winding nature of vortices we worked so hard to preserve remains in the theory. We might

expect this to lie in the same universality class, since it should still possess the vortex

behavior of the LSM.

Next we will factor out an overall factor of 4π2β/e2. At the most this should merely

change our partition function by some constant. If we define β′ = 1/β, then we will

finally have a partition function given by

Zsim(e, β′) =
∞∑

[~nj ]=−∞

∫ π

−π

dσj
2π

exp

(
−

N3∑
j=1

[
1

2
β′|~∇× ~nj|2 +

e2

8π2
|~∇σj − 2π~nj|2

])
.

Following Halperin [2] and Peskin [9], we expect ZLSM(e, β) ∝ (2πβ)−3N3/2Zsim(e, 1/β).

Again, we won’t derive this more rigorously as it was treated exhaustively by Peskin.

It is at this point where we make our own addition to the model. Though Halperin

discretized σ, he allowed n to take any integer value. To keep this introductory we don’t

want to deal with this as it would leave our state space infinite. It is possible to modify the
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Metropolis algorithm to incorporate an infinite state space, but that’s more complicated

than we want to address here. As such we will choose ~n ∈ {−1, 0,+1}3. With these

choices to discretize ~n and σ, we have finally reduced ourselves to a finite state space.

We can now describe the slight changes that need to be made to the Metropolis algo-

rithm we gave for the Ising model in order to explore Zsim. Most of the ajustments occur

in the third step where we need to deal with our larger state space. This algorithm is a

pseudocode description of the function mcmove defined in LSM_crit_exp.py found in my

GitHub repository [6].

Metropolis algorithm: Zsim

1. Choose an initial state {~n, σ} drawn from a uniform distribution.

2. Next pick a site (i, j, k) ∈ {1, 2, . . . , N}3 at random.

3. Now randomly choose a new value for σ and ~n at the site (i, j, k). That is

to say choose uniformly from the 100 possible values for the discretized σ ∈
[−π, π) and the 27 possible values for ~n ∈ {−1, 0,+1}3. Then compute ∆SE =

SE({~n, σ}final)− SE({~n, σ}initial).

The computation of ∆SE can be made significantly faster by only computing

the terms that depend on the site (i, j, k) instead of trying to compute all terms.

Since anyone wanting to write code that will run in a reasonable amount of time

will need to write out all the terms that depend on (i, j, k), we will write them

out here in the interest of completeness. Below are the terms of SE that depend

only on (i, j, k). To find this we used ~ni,j,k = (n1
i,j,k, n

2
i,j,k, n

3
i,j,k) and we reiterate

that the lattice derivative is defined so ∇1σi,j,k = σi+1,j,k−σi,j,k, likewise with the

other components.

(SE)i,j,k =
e2

8π2

{
[(σi,j,k − σi−1,j,k)− 2πn1

i−1,j,k]
2 + [(σi,j,k − σi,j−1,k)− 2πn2

i,j−1,k]
2+

+[(σi,j,k − σi,j,k−1)− 2πn3
i,j,k−1]2 + [(σi+1,j,k − σi,j,k)− 2πn1

i,j,k]
2

+ [(σi,j+1,k − σi,j,k)− 2πn2
i,j,k]

2 + [(σi,j,k − σi,j,k−1)− 2πn3
i,j,k−1]2

}
+
β′

2

{
[(n3

i,j+1,k − n3
i,j,k)

2 − (n2
i,j,k+1 − n2

i,j,k)]
2 + [(n1

i,j,k+1 − n1
i,j,k) + (n3

i+1,j,k − n3
i,j,k)]

2

+[(n2
i+1,j,k − n2

i,j,k)− (n1
i,j+1,k − n1

i,j,k)]
2 + [(n1

i−1,j,k+1 − n1
i−1,j,k)− (n3

i,j,k − n3
i−1,j,k)]

2

+[(n2
i,j,k − n2

i−1,j,k)− (n1
i−1,j+1,k − n1

i−1,j,k)]
2 + [(n3

i,j,k − n3
i,j−1,k)− (n2

i,j−1,k+1 − n2
i,j−1,k)]

2

+[(n2
i+1,j−1,k − n2

i,j−1,k)− (n1
i,j,k − n1

i,j−1,k)]
2 + [(n3

i,j+1,k−1 − n3
i,j,k−1)− (n2

i,j,k − n2
i,j,k−1)]2

+ [(n1
i,j,k − n1

i,j,k−1)− (n3
i+1,j,k−1 − n3

i,j,k−1)]2
}
.

Note that just as in the Ising model i ± 1, j ± 1, and k ± 1 are defined mod N ,

as the lattice is periodic. Now using the above function we can efficiently find

∆SE by noting that ∆SE = (SE)i,j,k({~n, σ}final) − (SE)i,j,k({~n, σ}initial) since we

have only changed the variables at the site (i, j, k). We now use ∆SE to take the

Metropolis step.
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(i) If ∆SE is less than zero, keep the new values for σ and ~n at (i, j, k).

(ii) If ∆SE ≥ 0, then choose a random number u from a uniform distribution

between 0 and 1. If u < e−∆SE then keep the new values for σ and ~n at the

site (i, j, k). If e−∆SE ≤ u then stick with the original values.

4. Return to step 2 and continue changing sites. If this has been done the appropriate

number of times, we can exit here.

We can see that the Metropolis algorithm for exploring Zsim is not that different from

the Metropolis algorithm for the Ising model. The only real difference was that the state

space was (much) larger and the energy function was more complicated.

It would be hard to visualize these states. Unlike the Ising model which took place on

a two-dimensional lattice and involved only a single parameter, this model takes place

on a three-dimensional lattice and involves four parameters. This makes it less amenable

to plotting than the Ising states in Figure 2. Thus we will move straight into evaluating

various temperature dependent quantities of the model.

We won’t be as explicit in describing the algorithm we used to find the various temper-

ature dependent quantities as we were for the algorithm that found CV (T ) and |〈M〉|(T )

for the Ising model. This is because our algorithm is essentially identical. We: 1) pick a

specific temperature, 2) generate a random state, 3) equilibrate the state for a time τeq(T )

using the Metropolis algorithm described above, 4) sample the quantities of interest of

the state for τcalc successive applications of the Metropolis algorithm, 5) compute appro-

priate averages of the quantities of interest, and return to 1) with the next temperature

value. Following Halperin, we chose to simulate all of our systems with e2 = 5. Further

we chose our equilibration time to be τeq(T ) = 5000 steps and our calculation time to be

τcalc = 5000 steps. Since Halperin chose on the order of 104 steps for his simulation, this

should be a reasonable choice [2].

Note that we chose to make τeq(T ) a constant instead of the time dependent quan-

tity it was for the Ising model. This is because simulating the LSM takes much longer

computationally. Not only is ∆SE more complicated, but because the system is three

dimensional each Metropolis algorithm step across the whole lattice will take on the order

of N3 steps instead of the N2 steps for the Ising model. Thus it would take a prohibitively

long time to allow τeq to increase exponentially near Tc as we did for the Ising model.

But this means we are likely to miss any critical slowing down behavior near Tc, and our

states with temperature near Tc might not have enough time to equilibrate there. This

lack of equilibration time means that we might obtain greater variance in our quantities

of interest near Tc than we would otherwise, since we will be measuring the quantities

against states that have not fully equilibrated. Thus we will need to take more samples

of the temperature in order to get reasonable averages for fitting.

Having discussed the important parameters of the simulation we now move on to

discussing some of its calculated quantities of interest, starting with its action. In SFT
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Figure 4. Scan of temperature axis for 4× 4× 4 LSM. Full action shown
in black, with covariant derivative piece and Maxwell piece in blue and red,
respectively.

the partition functions we encountered looked like Z =
∫
Dφ e−βE[φ], where the Euclidean

action was given by SE = βE[φ]. Since we can’t pull a β′ factor out of SE for Zsim, we will

need to evaluate the expectation value of the action instead of the energy. By linearity

we note that

〈SE〉 =

〈∑
j

1

2
β′|~∇× ~nj|2

〉
+

〈∑
j

e2

8π2
|~∇σj − 2π~nj|2

〉
.

We call the first term on the right hand side the Maxwell term, since it came from

the Maxwell term |~∇ × ~Aj|2 in the LSM. The second term will be called the covariant

derivative term, since it arose from the covariant derivative in the Abelian-Higgs Model.

The plot of 〈SE〉 vs. temperature T is shown as Figure 4. We obtained the plot by

taking several hundred temperature values between T = 0 and T = 2.5 for an N = 4

cubic lattice. Recall that since Peskin showed ZLSM(e, β) ∝ Zsim(e, 1/β) then T for the

LSM will be equivalent to β′ for Zsim. Since we expect the LSM to be the model that

lies in the same universality class as the Abelian-Higgs Model, we will plot all of our

quantities vs. T = β′ instead of T ′ = 1/β′.
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We can use the Maxwell term as an excellent sanity check on our simulation. Firstly,

we note that as β′ → ∞ the Maxwell term approaches zero. This makes sense; β′ → ∞
should freeze out any fluctuations with ~∇×~nj 6= 0 since any fluctuation of this form will

begin to cost near infinite energy. We also note that for β′ → 0 the Maxwell term begins

to approach zero as well. This is a little less intuitive. Near β′ = 0 fluctuations with
~∇ × ~nj 6= 0 will cost very little energy, and so we expect the states to take larger and

larger values of |~∇ × ~nj|2 as β′ → 0. In other words we might expect |~∇ × ~nj|2 ∼ β′−c

for some positive c. But the Maxwell term looks like β′|~∇ × ~nj|2 ∼ β′(1−c), so provided

0 < c < 1 we would expect it to approach zero as β′ → 0 but to do so slower than

linearly. This does seem to be the case for 0.3 < β′ < 1.3, but for β′ < 0.3 the descent

of the Maxwell term seems instead to be linear. Why is this? It is simply because we’ve

chosen ~n ∈ {−1, 0, 1}3. This means that |~∇ × ~nj|2 has an upper bound (of 3(4)2 in

fact). But this means that the divergence of |~∇× ~nj|2 is cut-off at a large positive value,

so β′−c stops describing its magnitude for small β′. Consequently, the Maxwell term

β′|~∇× ~nj|2 ∼ β′ for small β′, and we obtain the noted linear descent. Having explained

most of the features of the Maxwell term, we complete our sanity check and move on to

the full action.

We note that the action displays many of the same properties that we saw displayed

by the Ising model energy in SFT. It starts off at a level value at T = β′ = 0, around

95, before plunging rapidly around T = β′ = 1.5. It then hits a lower second asymptote

at around 40 for T = β′ large. The Ising model energy had this same form, but with

an increasing energy instead of a decreasing energy. Additionally, the slope of the Ising

model’s energy diverged near the critical temperature, where the energy crossed over

from small to large. Indeed since the heat capacity CV looks like the derivative of the

energy, and since CV exhibited logarithmic divergence near Tc, the slope of the energy

for the Ising model had to diverge at Tc. Thus we might be slightly concerned that the

lack of divergence of the slope of 〈SE〉 indicates that the specific heat of the LSM will not

diverge near Tc, which would contradict its being dual to the XY-Model. However, we

shouldn’t worry too much. Just as the Maxwell term’s divergence near β′ was limited by

the finite state space of ~n, we expect the divergence of CV to be constrained by finite size

effects. In fact Figure 3 of Halperin demonstrates that the height of CV near Tc grows

steeper with larger system sizes N [2]. Thus when it comes time for us to measure α we

needn’t worry about the slope of 〈SE〉 not diverging near Tc, we just need to choose a

larger system size than 4 × 4 × 4 to capture this divergence. For now though we would

like to measure β for our system.

We will continue to use the plot of energy in Figure 4 for guidance. Recall that for the

Ising model the higher energy coincided with the disordered phase, and the lower energy

the ordered phase. Thus we suspect that for T < Tc ≈ 1.5 we will be in the disordered

phase, and for T > Tc ≈ 1.5 we will be in the ordered phase. This makes some sense. For

T = β′ small we have no control over |~∇ × ~nj|, and it can take any value it likes. This
30



leads directly to a disordered phase. As β′ →∞ we discussed above that β′|~∇×~nj|2 → 0,

leading to a more ordered phase where there is control over the curl of ~n.

This simple logic makes sense, but in order to actually measure the critical exponent

β we need to know what the order parameter is. For the Abelian-Higgs Model the order

parameter is given by the complex scalar field ψ. This follows from the standard fact

that in the Landau-Ginzburg theory of superconductivity the order parameter is given by

the complex scalar field ψ, and the Abelian-Higgs Model coincides with the low-energy

description of a superconductor near its critical point. Now we know that ψ = ρeiσ in

our notation. Then since we froze out radial vibrations to arrive at the LSM, we suspect

that the LSM will have an order parameter given by ρ0e
iσ. In what follows we will drop

the ρ0 and simply refer to the order parameter as eiσ.

But if the order parameter is ψ ∝ eiσ, then how does this square with our earlier

statement that the ordered and disordered phases should be characterized by the size

of |~∇ × ~nj|? Recall that in the theoretical discussion of the Abelian-Higgs Model we

showed that the covariant derivative term ρ2(∂µσ − eaµ)2 allowed for the gauge field to

couple to the phase of the order parameter ψ. The same thing will happen for the LSM.

The covariant derivative term |~∇σj − 2π~nj|2 will allow the integer winding numbers ~n to

couple to the phase of eiσ. Thus we might expect that changing |~∇ × ~nj| will lead to a

consequent change in σ through the covariant derivative term. We can see some hint of

this in Figure 4. We’ve already seen that as we increase β′ the Maxwell term decreases,

but note that the blue covariant derivative term will also decrease. This is in spite of

the fact that there is no β′ factor in front of the covariant derivative term to freeze out

vibrations with ~∇σ − 2π~n 6= 0! Instead, since there is no accompanying β′ in from of

the covariant derivative term, all of the decrease in the covariant derivative term with β′

must come from its coupling to ~n. Thus the average size of |~∇ × ~n| appears to have a

direct effect on the average size of |~∇σ−2π~n|, and it stands to reason that in a disordered

phase with |~∇ × ~n| large the order parameter eiσ will indeed look different than in an

ordered phase with |~∇× ~n| = 0.

That eiσ does represent a good order parameter can be seen in Figure 5. The magnitude

of its average at different temperatures |〈eiσ〉| is displayed. It clearly has the same type

of behavior, with the temperature axis inverted, that |〈M〉| did in Figure 3(B). In the

disordered phase, T < Tc, it has a value of zero and jumps very quickly at T = Tc to

a nonzero value in the ordered phase. This is analogous to the Ising model having zero

magnetization in the disordered phase, but jumping to a nonzero magnetization in the

ordered phase. However, we do notice that there is a lot more spread around this jump

than there was for the Ising model in Figure 3. We already mentioned that this was

likely because of the possibility that states near Tc wouldn’t fully equilibrate, due to our

choosing to keep τeq temperature independent. As such we took many more data points

and binned them into intervals on the temperature axis. Binning the data allowed us to
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Figure 5. Determination of β for the LSM. The fit demonstrates that
Tc ≈ 1.6 and β ≈ 0.18. However, β’s value may be affected by finite size
effects.

display the mean of the bins as the red data points, with their errorbars corresponding

to the standard deviation of the mean value in the bins. These red data points give a

clearer picture of the underlying behavior of the function, and allow a better fit to be

made.

The fit is displayed in blue, showing that |〈eiσ〉| did seem to behave like |(T − Tc)/Tc|β

near Tc based on how well the fit appears to agree with the binned data in red. Reading

off from the fit allows us to conclude that Tc ≈ 1.6 and β ≈ 0.18. This is certainly greater

than the β of around 0.13 we found for the Ising model. However, it is nowhere near as

large as the β = 0.35 value that the XY-Model possesses, as mentioned in our discussion

of the XY-Model’s critical exponents. At first glance this would see to be a bitter blow to

the expectation that the LSM is dual to the XY-Model near the critical point. However,

just as the derivative of 〈SE〉 near Tc failed to diverge due to finite size effects, we suspect

that finite size effects are at play here. As we mentioned, making N larger will cause CV

to becomes steeper near Tc, and we likewise expect that making N larger would lead to

a steeper transition for |〈eiσ〉| near Tc. This would in turn increase the critical exponent

β. Unfortunately due to time constraints we were not able to test this. However, even
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without showing βLSM = βXY we can take heart in at least two facts. The first is that

Halperin did not attempt to determine β for the LSM, so our result is at least not in

conflict with this previous study of the LSM. The second is that our critical temperature

Tc ≈ 1.6 is extremely close to the critical temperature Tc = 1.62 that Halperin found [2].

This is in spite of the fact that we discretized the values ~n could take, and he did not.

This makes us hopeful that we will be able to demonstrate the same phase transition he

observed in CV (T ), and show α ' 0.

As mentioned in our discussion of the slope of 〈SE〉, we will likely need to choose a

larger system size than 4× 4× 4 to capture the divergence of CV (T ). We therefore chose

to simulate a system with size 5× 5× 5, this will have nearly twice the number of points

as the 4× 4× 4 system. Since the Metropolis algorithm’s computation time scales with

system size, this also means that simulating the system will take nearly twice as long.

These time constraints forced us to take fewer temperature values. The temperature

values we did take were clustered around the Tc = β′c ≈ 1.6 value that we found while

fitting to find β. The plot of CV (T ) vs. T for this simulation is shown in Figure 6, along

with the appropriate fit. We have binned and averaged the data for our fit, just as we

did our plot to find β.

Figure 6 mostly confirms the information found in Figure 3 of [2]. Firstly it appears

to have a log divergence. This is suggested by the fit, which seems to fit the underlying

data fairly well, despite the anticipated large spread. As with the Ising model it allows

us to conclude that α ' 0. We noted in the discussion of the critical exponents of the

XY-Model that the XY-Model had a critical exponent α ≈ −0.01 which is very close

to zero. Indeed Halperin takes the fact that his fits show a log divergence to support

that the α value for the LSM is the same as the α value of the 3D XY-Model [2]. This

is perhaps slightly dubious, but considering our value for β was off by 0.17 we will also

consider obtaining a value α ' 0 that is within −0.01 of the predicted value to be a

success.

Secondly our value for Tc = 1.51 is again reasonably close to Halperin’s value of Tc =

1.62. However, we note that it is less than the value Tc ≈ 1.6 that we found in our

fit for β where the system size was N = 4. This should not concern us a great deal.

Figure 3 in Halperin reveals that increasing the system size N slightly lowers the critical

temperature. The critical temperature does eventually approach an asymptotic limit as

N → ∞; one that is relatively close to its values for smaller N [2]. Thus the fact that

our value for Tc is 0.09 less for the N = 5 system than it was for the N = 4 system is

not surprising, and in fact provides more evidence that we are seeing the same transition

that Halperin found.

Finally, it seems clear from looking at the binned data in red that the specific heat for

T = Tc+∆T is higher than that for T = Tc−∆T . This can be seen from our fit by noting

that the fitting parametery D < 0. As does Halperin we note that this is the reverse of

what is expected for the XY-Model [2]. This provides evidence that we are in fact seeing
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Figure 6. Scan of temperature axis for 5× 5× 5 LSM. Binning was used
to obtain the points with errorbars in red. Fit demonstrates that α ' 0.

the same transition as the XY model, but with the temperature axis reversed around Tc.

In particular, recall that for the Abelian-Higgs Model we suspected that ã ∝ Tc − T . If

the same is true for the XY-Model, but with the temperature axis reversed around Tc,

then we would expect a ∝ T − Tc ∝ −ã. This is precisely what the table comparing the

phases of the Abelian-Higgs Model and the XY-Model suggested!

We have thus at last come to a place where we have our own numerical evidence for

the LSM undergoing an inverted XY-Model type transition. We therefore expect that

the Abelian-Higgs Model will have an inverted XY-Model transition as well, since the

arguments we gave in this section should mean that the LSM and the Abelian-Higgs

Model will lie in the same universality class. Then our numerics do indeed suggest that

the XY-Model and the Abelian-Higgs Model are dual, with ã ∼ −a near the transition!

This provides an excellent additional piece of evidence for believing the particle vortex

duality that we motivated theoretically in the first section. We will conclude on this high

note.
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