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Abstract. Weakly nonlinear oscillations exhibit a wide range of phenomena not seen in
simple linear oscillations. This paper considers weakly nonlinear oscillations with an analytic
forcing term, and attempts to understand various quantitative solution methods for this
problem. We give a quantitative demonstration of the failure of regular perturbation theory,
and use this failure to motivate investigation into two-timing and averaging theory. We
see that both two-timing and averaging theory give initially identical approximations of a
solution, in fact giving excellent approximations even when the nonlinear effects cease to
be weak. Finally, we see that the results given by two-timing and averaging theory are
physically valid only when the exact solution is bounded.
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1. Introduction

In many physical scenarios an equation will arise which is of the form

ẍ+ εh(x, ẋ) + x = 0 where 0 < ε� 1.

The initial conditions can be given by x(0) = y0 and ẋ(0) = ẏ0. In addition we will make
the requirement that h(x, y) be an analytic function of x and y. For most of the paper
the h(x, y)s considered will be convergent for all x, y ∈ R. Note that the requirement
that h be analytic is not too restrictive a condition, as in most well studied models of
oscillators h is assumed to be analytic. Examples of such cases might be a spring with small
damping, h(x, y) = 2y, or perhaps a pendulum with moderate amplitude oscillations where
h(x, y) = −x3 and ε = 1

6
. In any case, for a nonlinear h this equation quickly becomes

intractable if one attempts to use techniques which work for linear ordinary differential
equations. In the absence of exact solutions it becomes a natural thing to try an approximate
method, such as regular perturbation theory. However, whatever its successes in other areas
of nonlinear differential equations, regular perturbation theory fails miserably when applied
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to this problem. This can largely be attributed to its method of solution, which generates
unbounded terms in the expansion of x(t, ε) because of resonance in the solutions. In fact,
if h(x, y) = σ(x) or h(x, y) = γ(y), where σ and γ are not constant and also analytic, then
regular perturbation theory will have produced an unbounded term by at least the third term
of its expansion. Obviously, this is a problem as there exist many hs for which the solution
actually deceases (ex: h(x, y) = 2y), something totally misrepresented by the unboundedness
of regular perturbation theory.

Seeing the failure of regular perturbation theory, it becomes natural to look for other
approximations which preserve the uniform convergence of x(t, ε). Two (and more)-timing
is such an approximation. It succeeds by realizing that there are several natural time scales
in such a problem: a fast time, t, which controls the oscillation of solutions; a slow time,
εt, which controls their major decay and/or large frequency shifts; and a super slow time,
ε2t, which controls the decay and/or frequency shifts of problems with even hs, etc. It then
makes the somewhat ad hoc assumption that these different time scales can be treated as
independent of one another. This transforms the expansion of x(t, ε) from a series of total
differential equations to a series of partial differential equations in each time scale. Though
this separation of time into several variables is fundamentally non-rigorous, it does give
enough freedom to eliminate any unbounded terms which might arise, a la regular pertur-
bation theory. In doing so it produces very useful differential equations on the amplitude
and frequency of solutions. An example using the Van der Pol oscillator will show that these
approximations are fantastically accurate, even when ε = O(1).

Those desiring either a more physically motivated or more rigorous approximation can turn
to averaging theory. It uses the concepts of energy within an oscillator and the oscillator’s
mean displacement per cycle as a way to derive differential equations governing the amplitude
and frequency of the oscillator. At least to O(ε) these differential equations agree with the
ones derived through two-timing, validating the more ad hoc methodology used by two-
timing. In fact, the physical perspective given by averaging theory allows us to understand
intuitively the difference between even and odd σ and γ, as far as this pertains to the
development of unbounded terms in their respective expansions of x(t, ε). However, despite
averaging theory being more physically motivated and more rigorous, it becomes clear that
it is non-trivial to extend its results to O(ε2) or further. Two-timing’s expansion, however,
provides a very (computationally) clear roadmap to expanding any solution to O(εn)∀n ∈ N,
merely by considering n independent timescales t, εt, · · · , εnt.

This being said, even to O(ε) there are certain hs which will produce problems for two-
timing and averaging theory. We show the method of scaling that Kevorkian and Cole
propose to highlight where these problems might arise. However, by applying a second two
timing argument to the normalized solution, we can see that a broader spectrum of hs will
create an approximation which is sensitive to initial conditions. This leads us to conclude
that, physically, the application of two-timing is extremely useful, provided it is constrained
to trajectories that do not head to infinity as t goes to infinity.

2. Regular Perturbation Theory

We know that if x is a solution of the above equation it will be a function of ε. This
function can be formally expanded as x(t, ε) =

∑∞
n=0 ε

nxn(t). We can also expand h about
(x0, ẋ0). Then we have that h(x, ẋ) = h(x0, ẋ0) + ε

[
∂h
∂x

(x0, ẋ0)x1 + ∂h
∂ẋ

(x0, ẋ0)ẋ1
]

+ O(ε2).
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Substituting these expressions into the first equation, and collecting powers of ε gives:

ẍ0 + x0 =0(1)

ẍ1 + x1 =− h(x0, ẋ0)(2)

ẍ2 + x2 =−
[
∂h

∂x
(x0, ẋ0)x1 +

∂h

∂ẋ
(x0, ẋ0)ẋ1

]
,(3)

where we can separate powers because we require the equations hold for all small ε. Note
that requiring the solution be valid for all small ε also implies x0(0) = y0, ẋ0(0) = ẏ0 and
xi(0) = 0, ẋi(0) = 0 for i 6= 0.

Before discussion of regular perturbation theory we should be specific about what it is we
want from an approximate solution. We look for one which will converge uniformly, as this
will allow us to compute only a finite number of terms yet still have an idea of the long-term
behaviour of the system (as the uniform convergence justifies the neglect of higher order
terms for all times t).

Definition 2.1. Let a secular term xi(t) in the expansion of x(t, ε) be defined as one such
that lim supt→∞ |xi(t)| =∞.

Lemma 2.2. The solution to (1) is x0(t) = A cos(t+ φ) where A =
√
y20 + ẏ20, tanφ = − ẏ0

y0
.

Proof. We see that ẍ0 = −A cos(t + φ) = −x0, no matter the values of A and φ. Plugging
in the initial conditions x(0) = y0 and ẋ(0) = ẏ0 gives the values of A and φ. �

Example 2.3. Consider the weakly damped harmonic oscillator, whose amplitude x is given
by an equation of the form ẍ+2εẋ+x = 0. Multiplying by ẋ and integrating with respect to
time shows that V (x, ẋ, t) = 1

2
(ẋ)2 + 1

2
x2 + 2ε

∫ t
0

(ẋ)2dt′ is constant on every trajectory. Thus

if the oscillator’s initial conditions are y0, ẏ0, then we must have that V (x, ẋ, t) = 1
2
y20 + 1

2
ẏ20

for all t. But since each term of V (x, ẋ, t) is greater than or equal to zero, this means that

|x| ≤
√
ẏ20 + y20 for all t.

Now consider attempting to solve the problem with an ordinary perturbative approach.
From Lemma 2.2 we have that x0(t) = A cos(t + φ) where A and φ are given in Lemma
2.2. But then (2) implies that ẍ1 + x1 = A sin(t + φ). One can check that a solution to
this is x1(t) = A

2
(sin(t + φ) − t cos(t + φ)), where we have used that x1(0) = 0, ẋ1(0) = 0.

Thus, we have that x(t, ε) = A cos(t+ φ) + εA
2
(sin(t+ φ)− t cos(t+ φ)) +O(ε2). Notice that

this solution is only valid for t � O(ε−1), as otherwise the secular term will dominate, in
contradiction to the boundedness relation derived above. Indeed, not only does the growth
of this term contradict the boundedness relation above, but our hopes for the series of x(t, ε)
to be uniformly convergent.

In fact, this equation can be solved explicitly to give

x(t, ε) = A cosφ e−εt
(

cos
(√

1− ε2t
)

+
ε− tanφ√

1− ε2
sin
(√

1− ε2t
))

where the first two terms in its Taylor expansion are A cos(t+φ)+εA
2
(sin(t+φ)−t cos(t+φ)).

As noted, the appearance of a secular term means that the expansion is no longer uniformly
convergent for all times t. In this case, regular perturbation theory has failed to give a
solution which satisfies the condition that we stated; in fact failing by the second term of the
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series. As in this case, regular perturbation theory often gives an expansion which converges
to a solution for all t only if an infinite number of terms are computed. Therefore, it is a
natural question to ask for what h(x, y) secular terms occur in the series for x(t, ε), and if
they do, where in the series they appear.

First, a few lemmas are required.

Lemma 2.4. The equation ẍ + x = A cos(ωt + φ) only has secular solutions if ω = 1, with
the same result holding if cos is replaced with sin.

Proof. One can check that the general solution is given by:

x(t) = c0 cos t+ c1 sin t+

{
A

1−ω2 cos(ωt+ φ) if ω 6= 1
A
2
t sin(t+ φ) if ω = 1

,

where c0, c1 ∈ R are chosen to satisfy initial conditions.
If instead we have ẍ+ x = A sin(ωt+ φ), then the general solution is given by

x(t) = c0 cos t+ c1 sin t+

{
A

1−ω2 sin(ωt+ φ) if ω 6= 1

−A
2
t cos(t+ φ) if ω = 1

,

where, again, c0, c1 ∈ R are chosen to satisfy intial conditions. �

This is an extremely useful thing to know, as it can be combined with the Fourier series
decomposition of h(x0, ẋ0) to get an understanding of exactly when secular terms occur.
Note that we can Fourier transform h(x0, ẋ0) because, per our assumption, it is analytic and
it is a periodic function of t+ φ (since x0 and ẋ0 are periodic functions of t+ φ). Let:

h(x0, ẋ0) =
a0
2

+
∞∑
n=1

an cos(nθ) + bn sin(nθ) where θ = t+ φ

then by Lemma 2.4, and (2), we see that x1 will have a secular term if, and only if, a1 or b1
is not zero. We now naturally turn to computing the Fourier series of some functions of x0
and ẋ0.

Lemma 2.5. Let f : R→ R be a function such that f(θ+ 2π) = f(θ). If f(θ+ π) = −f(θ)

or if f(−θ) = −f(θ) then
∫ 2π

0
f(θ)dθ = 0.

Proof. Simple manipulations of integrals reveal this. �

Definition 2.6. Let:

f(m, p, n) :=
1

π

∫ 2π

0

cosm θ sinp θ cos(nθ)dθ for n,m, p ∈ N ∪ {0}

g(m, p, n) :=
1

π

∫ 2π

0

cosm θ sinp θ sin(nθ)dθ for n,m, p ∈ N ∪ {0}.

Lemma 2.7. We have that f(m, p, n) = 0 unless m, p, and n are all even, or p is even and
m and n are odd. Similarily, we have that g(m, p, n) = 0 unless m is even and p and n are
odd, or n is even and p and m are odd. It is also the case that f(2m, 2p, 0) > 0 for all
m, p ∈ N ∪ {0}.
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Proof. Let f(θ) := cosm θ sinp θ cos(nθ) and g(θ) := cosm θ sinp θ sin(nθ). We have that
f(−θ) = (−1)pf(θ) and g(−θ) = (−1)p+1g(θ). So if p is odd then f(m, p, n) = 0 by
Proposition 2.5, and similarily, if p is even then g(m, p, n) = 0. Additionally, f(θ + π) =
(−1)m+p+nf(θ) and g(θ + π) = (−1)m+p+ng(θ). Then since p must be even for f(m, p, n) to
be nonzero, by Proposition 2.5 we have that n and m must both be even or both be odd for
f(m, p, n) to be nonzero (since if n + p + m is odd then f(m, p, n) = 0). Similarily, we see
that n and m must have opposite parity for g(m, p, n) to be nonzero.

Now let p(θ) := cosm θ sinp θ. Then f(2m, 2p, 0) = 1
π

∫ 2π

0
[p(θ)]2dθ. We see that p is

continuous, not identically zero, and therefore f(2m, 2p, 0) is strictly positive. �

Remark 2.8. Note that the above conditions given in Lemma 2.7 are necessary, but not
sufficient, for f and g to be nonzero; for example, it can be shown that f(2, 2, 2) = 0 even
though m, p, and n are all even.

One final lemma and then it is time to see in what cases regular perturbation theory fails
our criteria for a good approximation.

Definition 2.9. Let

(
n
k

)
:= n!

k!(n−k!) when n ≥ k and n, k ∈ N∪ {0} and

(
n
k

)
:= 0 if n < k

or if k /∈ N ∪ {0} or n /∈ N ∪ {0}.

Lemma 2.10. We have that f(m, 0, n) = 21−m
(
m
m+n
2

)
and g(m, 0, n) = 0 for all m,n ∈

N ∪ {0}. We also have that f(0, 2p, 2n) = (−1)n21−2p
(

2p
p+ n

)
and g(0, 2p + 1, 2n + 1) =

(−1)n2−2p
(

2p+ 1
p− n

)
for all p, n ∈ N ∪ {0} and that f(0, p, n) = 0 if p or n is odd and

g(0, p, n) = 0 if p or n is even. Furthermore, g(1, 2k+1, 2n) = (−1)n+121−2k 2n
2k+2

(
2k + 2

k + n+ 1

)
Proof. Since in the expression g(m, 0, n), p is in the form p = 2k, where k = 0, then p is
even and by Lemma 2.7 this means that g(m, 0, n) = 0 regardless of the values of m or n. It
is also known that cos θ = 2−1(eiθ + e−iθ) where i2 = −1. Then we have that:

f(m, 0, n) =
1

π

∫ 2π

0

cosm θ cos(nθ)dθ

=
1

2m+1π

∫ 2π

0

(eiθ + e−iθ)m(einθ + e−inθ)dθ

=
1

2m+1π

∫ 2π

0

[(
einθ + e−inθ

) m∑
k=0

(
m
k

)
ei(m−2k)θ

]
dθ by the Binomial Exp. Thm.

=
1

2m+1π

m∑
k=0

(
m
k

)[∫ 2π

0

ei(m+n−2k)θdθ +

∫ 2π

0

ei(m−n−2k)θdθ

]
where summation and integration could be interchanged because the sum was finite, and

integration is a linear operator. Note that
∫ 2π

0
eipθdθ = − i

p

[
eipθ
]2π
0

= 0 if p 6= 0, but if p = 0

then the integral is equal to 2π. Thus, the only nonzero contributions to the sum will be
5



when m + n − 2k = 0 and m − n − 2k = 0. This also implies that if (m ± n)/2 is not an
integer, then there will be no k such that this occurs, and the entire sum will be zero. Thus:

f(m, 0, n) =
1

2m+1π

[
2π

(
m
m+n
2

)
+ 2π

(
m
m−n
2

)]
.

It can be checked that

(
m
m+n
2

)
=

(
m
m−n
2

)
. Then having taken care of the case where

m±n
2

/∈ N by setting the binomial coefficient to zero if this is true, we have that f(m, 0, n) =

21−m
(
m
m+n
2

)
.

Since m = 0 is even, then by Lemma 2.7, if p and n are not both even f(0, p, n) = 0.
Also by Lemma 2.7, if p and n are not both odd then g(0, p, n) = 0. Finally, by realizing
sin θ = −2−1i(eiθ−e−iθ) and using identical arguments we can arrive at the expressions given
above for f(0, 2p, 2n), g(0, 2p+ 1, 2n+ 1), and g(1, 2k + 1, 2n). �

Since we have assumed h(x, y) to be analytic, it can be written in the form h(x, y) =∑∞
j=0

∑∞
i=0 dijx

iyj where dij ∈ R for all i, j ∈ N ∪ {0}. Referring back to Lemma 2.2,

we see that no matter the h(x, y) we have x0(t) = A cos(t + φ). To simplify calculation
t + φ := θ, where this is simple substitution since dt = dθ. Therefore, in the equation for
ẍ1 + x1 = −h(x0, ẋ0), if h is analytic we have:

d2x1
dθ2

+ x1 =
∞∑
j=0

∞∑
i=0

(−1)j+1Ai+jdij cosi θ sinj θ(4)

=
a0
2

+
∞∑
n=1

an cos(nθ) + bn sin(nθ) where ai, bi Fourier coeff. of − h(x0, ẋ0).(5)

As mentioned before, x1 will have a secular term only when a1, b1 = 0. Therefore, to see
what sort of analytic h will not give secular terms, we may calculate a1 and b1 and set them
equal to zero. Hopefully, once this is done we will have a meaningful condition on dij. In
fact we do get such a result, provided that we require x1(t) not have a secular term for all
initial conditions. However, as discussed x1’s secular terms are directly dependent on h. So
if x1 was without secular terms only for certain initial conditions, this means that h would
depend in some way on initial conditions. To have our forcing function dependent on intial
conditions is anathema to the physical picture we hope to build, so we can see it would be
a kind of cheating to not require x1(t) to be non-secular for all initial conditions.

Theorem 2.11. If h is analytic of the form h(x, y) =
∑∞

j=0

∑∞
i=0 dijx

iyj and x1(t) does not
have secular terms for any given initial conditions, then:

l∑
i=0

d(2i+1)(2l−2i)f(2i+ 2, 2l − 2i, 0) =0 ∀l ∈ N ∪ {0}(6)

l∑
j=0

d(2l−2j)(2j+1)f(2l − 2j, 2j + 2, 0) =0 ∀l ∈ N ∪ {0}.(7)

Proof. The conditions (6) and (7) on dij arise simply from computing a1 and b1 from (4) and
setting them equal to zero (and by Lemma 2.4 getting rid of any secular terms in x1). The
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calculation that follows is somewhat tedious, but the result is hopefully rewarding enough.

0 := a1 =
1

π

∫ 2π

0

[
∞∑
j=0

∞∑
i=0

(−1)j+1Ai+jdij cosi θ sinj θ

]
cos θdθ

=
∞∑
j=0

∞∑
i=0

(−1)j+1Ai+jdijf(i+ 1, j, 0)1

=
∞∑
j=0

∞∑
i=0

(−1)2j+1A2(i+j)+1d(2i+1)(2j)f(2i+ 2, 2j, 0) by Lemma 2.4

=
∞∑
l=0

l∑
i=0

A2l+1d(2i+1)(2l−2i)f(2i+ 2, 2l − 2i, 0) by setting l=j+i

One can view this as a power series for A, where 0 :=
∑∞

l=0 vlA
2l+1, and the vls are given by

(6). We require that the series
∑∞

l=0 vlA
2l+1 is zero for all values of A ∈ R (or, equivalently

a1 = 0 for all initial conditions). However, this implies that all of its derivatives are zero,
and thus that vl = 0 for all l ∈ N ∪ {0}. Then we have condition (6) on the dij. A similar
computation requiring b1 := 0 gives condition (7). �

Corollary 2.12. If all dij terms have the same sign, then dij = 0 if i and j are not of
the same parity. More importantly, if h(x, y) is analytic and has no cross terms so that
h(x, y) = σ(x) + γ(y), then σ and γ must both be even functions.

Proof. Suppose that all dij ≥ 0. By Lemma 2.7 f(2m, 2p, 0) > 0 for all m, p ∈ N ∪ {0}. So

then 0 ≤ d(2i0+1)(2l−2i0)f(2i0+2, 2l−2i0, 0) ≤
∑l

i=0 d(2i+1)(2l−2j)f(2i+ 2, 2l − 2i, 0) = 0 where
i0 is any natural number less than or equal to l. Dividing by the positive f(2i0+2, 2l−2i0, 0)
we see that d(2i0+1)(2l−2i0) = 0 for every l ∈ N ∪ {0}, and every i0 ≤ l. Picking i0 = n and
l = n + k ≥ i0 reveals that d(2n+1)(2k) = 0 for every n, k ∈ N ∪ {0}. Using condition (7) we
can see that d(2k)(2n+1) = 0 is also true for every n, k ∈ N ∪ {0}. The same argument holds,
with flipped inequalities, if dij ≤ 0. Thus, if all dij have the same sign, then dij = 0 if i and
j are not the same parity and x1(t) is required to not contain any secular terms.

Finally, let dij = 0 if both j and i are greater than or equal to one. In other words
let h(x, y) be analytic, so that h(x, y) =

∑∞
j=0 d0jy

j +
∑∞

i=1 di0x
i := γ(y) + σ(x). But then

condition (6) becomes d(2l+1)(0)f(2l+2, 0, 0) = 0 for all l ∈ N∪{0} and condition (7) becomes
d(0)(2l+1)f(0, 2l + 2, 0) = 0 for all l ∈ N ∪ {0}. Since f(2m, 2p, 0) > 0 this means that all the
odd terms of σ and γ must be zero. Thus, if h(x, y) = σ(x) + γ(y) then σ(x) = σ(−x) and
γ(−y) = γ(y). �

Even though conditions (6) and (7) appear at first glance to be fairly algebraically in-
tractable, they are very useful for most physical phenomena. Three of the most important
equations of the form we have been considering are: the Van der Pol oscillator, the unforced
Duffing equation, and the damped harmonic oscillator. Respectively they have the form:
hV (x, y) = y(x2 − 1), hD(x, y) = x3, hH(x, y) = 2y. Both hV and hH have nonzero d01, and
thus fail condition (7). Additionally, hD has no cross terms, but is an odd function of x.
Thus, attempting to use regular perturbation theory for any of the three will give a secular

1because the series converges uniformly in A (true since h is analytic)
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term in x1(t). Then for any finite expansion of x(t, ε) the approximation given by regular
perturbation theory will only be valid for t � O(ε−1). So then regular perturbation theory
fails miserably to approximate arguably the most important weakly nonlinear equations.
However, what if it is possible to construct some h(x, y) such that it never has a secular
term in any xi(t)? This would certainly be redeeming for regular perturbation theory. A
simple example will suggest that this is not the case.

Example 2.13. Consider h(x, y) = σ(x) = x2. Then we have that d2x1
dθ2

+x1 = −A2 cos2 θ =

−A2

2
(1 + cos(2θ)). By Lemma 2.4 this gives:

x1(t) = c0 cos(t+ φ) + c1 sin(t+ φ)− A2

2
+
A2

6
cos(2t+ 2φ),

where c0 and c1 are chosen so that x1(0) = 0 and ẋ1(0) = 0. But then from (3) this means
that:

d2x2
dθ2

+ x2 =− 2x0x1

=A3 cos θ − A3

3
cos θ cos(2θ)− 2Ac0 cos2 θ − 2Ac1 sin θ cos θ

=− Ac0 +
5A3

6
cos θ − Ac0 cos(2θ)− Ac1 sin(2θ)− A3

6
cos(2θ).

So then we see that 5A3

6
cos θ generates a secular term, ensuring that x2(t) has a secular term.

So in this case even though h(x, y) manages to avoid a secular term in x1(t), it will still arise
by x2(t).

Theorem 2.14. Suppose that h(x, y) = σ(x) or h(x, y) = γ(y) is a function such that
neither x1(t) nor x2(t) contains secular terms. If h(x, y) is analytic, then it is constant.

Proof. For ease of notation, let Lp(x) = d2x
dp2

+ x. Let h(x, y) = σ(x) where σ is analytic.

Then σ(x) =
∑∞

i=0 bix
i. We know from Corollary 2.12 that if x1(t) does not contain any

secular terms we can write σ(x) =
∑∞

i=0 dix
2i, where b2i = di. Therefore, (2) becomes

Lθ(x1) = −
∑∞

m=0A
2mdm cos2m θ. Lemma 2.10 allows us to Fourier transform this to:

Lθ(x1) =−
∞∑
n=0

∞∑
m=0

21−δn0−2mA2mdm

(
2m

m+ n

)
cos(2nθ)2

x1(θ) =
∞∑
n=0

∞∑
m=0

21−δn0−2m

4n2 − 1

(
2m

m+ n

)
A2mdm cos(2nθ) + cos θ

∞∑
m=0

2−2m
(

2m
m

)
A2mdm

Lθ(x2) =− σ′(x0)x1 by (3)

=
∞∑
n=0

∞∑
m=0

∞∑
i=0

(4i+ 4)

22m+δn0(1− 4n2)

(
2m

m+ n

)
A2(i+m)+1di+1dm cos2i+1 θ cos(2nθ)

− σ′(x0(θ)) cos θ
∞∑
m=0

2−2m
(

2m
m

)
A2mdm
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Note that since x0(θ) = A cos θ, and since σ′(x) is an odd function of x,

σ′(x0(θ + π)) =− σ′(x0(θ))
=⇒ cos2(θ + π)σ′(x0(θ + π)) =− cos2 θσ′(x0(θ))

sin(θ + π) cos(θ + π)σ′(x0(θ + π)) =− sin θ cos θσ′(x0(θ)).

Then we have that the last term contributes nothing to the a1 or b1 of the term on the RHS
of the last equation. By Lemma 2.7 we see that b1 = 0. We require that a1 = 0; by Lemma
2.10 this gives:

a1 =
∞∑
n=0

∞∑
m=0

∞∑
i=0

2i+ 2

22(i+m)+δn0(1− 4n2)

(
2m

m+ n

)(
2i+ 2

i+ n+ 1

)
A2(m+i)+1di+1dm := 0(8)

=⇒
∞∑
n=0

l∑
i=0

2i+ 2

2δn0(1− 4n2)

(
2l − 2i
l − i+ n

)(
2i+ 2

i+ n+ 1

)
di+1dl−i = 0 ∀l ∈ N ∪ {0}.(9)

The implication above was arrived at by setting m + i = l and realizing the coefficients of
all powers of A must be zero for this to be true for all A. Also note that if n > l, then no
matter the value of i, (2l− 2i, l− i+ n) = 0, thus the sum becomes finite over both i and n.

Let ∆(i+1)(l−i) = di+1dl−i and let:

µ(i+1)(l−i) :=
l∑

n=0

2i+ 2

2δn0(1− 4n2)

(
2l − 2i
l − i+ n

)(
2i+ 2

i+ n+ 1

)
We want to show that for every l and every i, µ(i+1)(l−i) > 0. We notice that the only
negative terms appears in the sum when n > 0. Thus, we need to show:∣∣∣∣∣

l∑
n=1

1

1− 4n2

(
2l − 2i
l − i+ n

)(
2i+ 2

i+ n+ 1

)∣∣∣∣∣ < 1

2

(
2l − 2i
l − i

)(
2i+ 2
i+ 1

)
.

Since

(
2k
k

)
>

(
2k
k + l

)
for every k and l, we have:∣∣∣∣∣

l∑
n=1

1

1− 4n2

(
2l − 2i
l − i+ n

)(
2i+ 2

i+ n+ 1

)∣∣∣∣∣ <
∣∣∣∣∣

l∑
n=1

1

1− 4n2

(
2l − 2i
l − i

)(
2i+ 2
i+ 1

)∣∣∣∣∣
<

(
2l − 2i
l − i

)(
2i+ 2
i+ 1

) ∞∑
n=1

1

4n2 − 1

=
1

2

(
2l − 2i
l − i

)(
2i+ 2
i+ 1

)
.

Note that we used the fact that 2
4n2−1 = 1

2n−1 −
1

2n+1
, so that

∑l
n=1

1
4n2−1 = l

2l+1
. This

holds for every l and i, so that

(9) =⇒
l∑

i=0

µ(i+1)(l−i)∆(i+1)(l−i) = 0 ∀l ∈ N ∪ {0},

2The Kronecker delta, or δij :=

{
0 if i 6= j

1 if i = j
is used to incorporate a0

2 into the sum.
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with µ(i+1)(l−i) > 0 no matter the i or l. Suppose that d0 6= 0. Then using the above sum
when l = 0 and dividing by µ10d0 reveals d1 = 0. Now let P (n) be the proposition that
dk = 0 for all k ≤ n such that k 6= 0. Assuming P (n) and considering l = n gives that
µ(n+1)(0)∆(n+1)(0) = 0 is the only relavent term in the above sum. Dividing through by the
nonzero µ and d0 means that dn+1 = 0, or P (n+ 1) is true. Thus by induction dk = 0 for all
k ∈ N.

Alternatively, suppose that d0 = 0. Then one has that µ11d
2
1 + µ20d0d2 = µ11d

2
1 = 0, or

d1 = 0 (with l = 1). Let l = 2n+ 1 and let P (n) once again be the proposition that dk = 0
for all k ≤ n such that k 6= 0. Suppose that 2n − i + 1 ≥ n + 1 and that i + 1 ≥ n + 1.
Then i ≤ n and i ≥ n ensuring that i = n. Note that if either i+ 1 or 2n− i+ 2 is less than
n+ 1 then ∆(i+1)(2n−i+1) = 0 by assumption of P (n). Thus if P (n) is true, taking l = 2n+ 1
gives µ(n+1)(n+1)d

2
n+1 = 0, and dividing gives P (n + 1). Then by induction dk = 0 for all

k ∈ N ∪ {0}.
A similar argument can be used if h(x, y) = γ(y) with γ analytic. In this case µ(i+1)(l−i) =

−
∑l−i

n=1
4n2

2δn0 (1−4n2)

(
2l − 2i
l − i+ n

)(
2i+ 2

i+ n+ 1

)
. It is clear that µ < 0 in this case. Since the

sum is nonexistant for ∆(l+1)(0), the second induction argument will work no matter the d0
value. Then we have shown that if h(x, y) is an analytic even function of just x or y, and
is not trivially constant, then it avoids secular terms in its expansion out to x1, but will
certainly acquire them if expanded to x2. �

3. Two (and more) - Timing

Seeing the spectacular failure of regular perturbation theory to address weakly nonlinear
oscillations, we must search for an approximation which satisfies the conditions we gave at
the beginning of the paper. Referring back to Example 2.1, we see that the exact solution
featured a ”slow” time εt and a ”fast” time t. Heuristically we may guess that this is true
for most weakly nonlinear oscillations; there is a fast time during which the system oscillates
and a slow time during which the system decays. We expect this because, since |ε| � 1, the
nonlinear behaviour is mostly suppresed, so that given a small time t0 the system behaves
like a harmonic oscillator, but given a long time t0ε

−1 it reveals its nonlinear colours. Seeking
a way to quantify these heuristic assumptions we make the apparently very ad hoc suggestion
that t, εt, · · · , and εnt are independent variables. Initially, this method seems suspicious, so
we shall test it.

Consider only two time scales T0 := t and T1 := εt. Since we choose to treat these as
independent variables we have that:

dx

dt
=
∂x

∂T0

∂T0
∂t

+
∂x

∂T1

∂T1
∂t

=
∂x

∂T0
+ ε

∂x

∂T1

=⇒ d2x

dt2
=
∂2x

∂T 2
0

+ 2ε
∂2x

∂T1∂T0
+ ε2

∂2x

∂T 2
1

.
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Substituting these into the original expression, expanding h about
(
x0,

∂x0
∂T0

)
, and collecting

powers of ε gives:

∂2x0
∂T 2

0

+ x0 =0(10)

∂2x1
∂T 2

0

+ x1 =− 2
∂2x0
∂T1∂T0

− h
(
x0,

∂x0
∂T0

)
,(11)

where we have ignored the equations governing xi(t) for i ≥ 2. An example will illuminate
the effectiveness of the method, even for large ε.

Example 3.1. Suppose that we have the Van der Pol oscillator, h(x, y) = y(x2 − 1), with
initial conditions x(0) = 1 and ∂x

∂T0
(0) = 0. By (10) we have that x0(T0) = A(T1) cos(T0 +

φ(T1)), where ∂A
∂T0

= ∂φ
∂T0

= 0. Substitution into (11) gives:

∂2x1
∂T 2

0

+ x1 =

(
2
∂A

∂T1
− A+

1

4
A3

)
sin(T0 + φ) + 2A

∂φ

∂T1
cos(T0 + φ) +

1

4
A3 sin(3T0 + 3φ).

(12)

Now we see why two-timing is so useful. It allows us to choose A(T1) so that the secular term
in x1 can be avoided. Making that choice in this case gives the equations A′ = 1

2
A − 1

8
A3

and Aφ′ = 0, where the prime indicates partial differentiation with respect to T1. However,
since A and φ are constant under T0, and since we are only considering two time scales, the
partial differential equations above are actually total differential equations with respect to
T1. Integrating the equation for A using partial fractions gives that A(T1) = 2√

1+ce−T1
where

c = 4
A(0)2

− 1. Since A(0) 6= 0 this is never zero, so Aφ′ = 0 implies φ′ = 0, or φ is constant

under both T0 and T1. From the initial conditions it is clear that φ = 0 and A(0) = 1. Then
x0(t) = 2√

1+3e−εt
cos t, since T1 = εt. Since A and φ are now uniquely determined, it is easy

to calculate x1 from (12). Using Lemma 2.4 we have x1(t) = 3 sin t−sin(3t)
4(1+3−εt)3/2

, where we have

ensured that x1(0) = 0 and ∂x1
∂T0

(0) = 0. So then we have that:

x(t, ε) =
2 cos t√
1 + 3e−εt

+ ε
3 sin t− sin(3t)

4(1 + 3e−εt)3/2
+O(ε2)

Below is a series of plots in the phase plane. The red trajectory is the approximation,
whereas the blue trajectory was numerically integrated by Mathematica.
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(c) Large ε = .5

Figure 1. Phase plane comparisons for Van der Pol oscillator

What is spectacular about the figures shown above is the stunning range of ε over which
they are accurate. Even when ε is on the order of 1, far greater than the restriction we
made in the beginning of the paper that |ε| � 1, we see that the approximation is still very
accurate.

Heartened by how surprisingly accurate two-timing is, even over a large range of ε, we

would like to move to more general results. Let b1(A) = 1
π

∫ 2π

0
sin θ h

(
x0,

∂x0
∂T0

)
dθ and

a1(A) = 1
π

∫ 2π

0
cos θ h

(
x0,

∂x0
∂T0

)
dθ, where θ = T0 +φ(T1) is constant over T0. It is clear from

Example 3.1 above that if we require

∂A

∂T1
=
b1(A)

2
and A

∂φ

∂T1
=
a1(A)

2
(13)

that this will eliminate any secular terms from x1.

4. Physical Perspective and Averaging Methods

Another approach to approximating solutions for problems of this form are those found
from averaging theory. Averaging theory has the added pro of containing more physical
insight, at least in the O(ε) terms. It is also more easily made rigorous. However, it is harder
than two timing to extend to other equation types, such as partial differential equations.
Averaging theory’s usual approach is to convert the equation of weakly nonlinear oscillation
into two equations in polar form in the phase plane. From these the O(ε) decay or growth
of trajectories and the O(ε) period differences are discerned. We will take an equivalent
approach, but one that will hopefully give more physical insight.

Definition 4.1. Define E(t) = 1
2
(ẋ(t))2+ 1

2
(x(t))2 to be the energy possessed by the oscillator

at time t, where x(t) is its displacement from the origin.

Proposition 4.2. Suppose that the weakly nonlinear equations give a periodic solution with

T = 2π+O(ε). Then E(T )−E(0)
T

= εAb1(A)/2 +O(ε2). If we regard the average energy change

per cycle as equal to its instantaneous rate of change we recover dA
dt

= εb1(A)/2 +O(ε2).

12



Proof. For now let the period of the solution be T . We see from multiplying the oscillation
equation by ẋ and integrating over time that:

0 =ẍẋ+ xẋ+ εh(x, ẋ)ẋ

0 =

∫ T

0

ẍẋ+ xẋ+ εh(x, ẋ)ẋ dt

0 =
1

2

(
[ẋ(T )]2 − [ẋ(0)]2 + [x(T )]2 − [x(0)]2

)
+ ε

∫ T

0

h(x, ẋ)ẋ dt′

0 =E(T )− E(0) + ε

∫ T

0

h(x, ẋ)ẋdt′

E(T )− E(0)

T
=− ε

T

∫ T

0

h(x0, ẋ0)ẋ0 dt+O(ε2) where T = 2π +O(ε)

=εA
b1(A)

2
+O(ε2) where A treated as constant

dE
dt

=
E(T )− E(0)

T
by assumption

A2 =(ẋ)2 + x2 = 2E

=⇒ A
dA

dt
=εA

b1(A)

2
+O(ε2)

Note that if is h(x, y) analytic and converges for all x, y then, by Theorem 2.11, b1(A) is
an odd power series of A that converges for all A. But then dE

dt
= εf(E) where f is a power

series that converges for all E and is such that f(0) = 0. Since f converges for all E it is
continuously differentiable for all E . Then, by the Existance and Uniqueness theorem and
f(0) = 0, if E(t0) = 0 then E(t) = 0 for all times t. This means that if E(t0) 6= 0 for some t0,
then E(t) > 0 for all times t. Since A2 = 2E and b1(0) = 0 we can divide through the last
equation by A, no matter the initial conditions.

This gives us the identical equation for A that we derived from two-timing. Nevertheless,
though this equation’s origin was slightly mysterious in the context of two-timing, here we
directly see that to O(ε) it is b1 that controls the change in energy of the system. �

Proposition 4.3. Suppose that x(t, ε) = A cos([1 + εω]t) + c = A cos(t + φ) + c, where

c = ε
2π

∫ 2π

0
h(A cos θ,−A sin θ)dθ = εa0

2
is the ‘center’ of the oscillations and the constant

term of x1. Then we can see that Adφ
dt

= εa1(A)/2 +O(ε2).

Proof. Note that since we have assumed x(t, ε) has the form

A cos([1 + εω]t) + c and A cos(t+ φ) + c

then dφ
dt

must be equal to εω. We also see that:

1

2π

∫ 2π

0

C cos([1 + εω]t)dt =
C

2π(1 + εω)
sin(2πεω)

=
C

2π

(
1− εω +O(ε2)

) (
2πεω +O(ε3)

)
=Cεω +O(ε2).
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Then, by the assumptions on x(t, ε), we have that 1
2π

∫ 2π

0
x(t, ε)dt = Aεω + c + O(ε2) =

Adφ
dt

+ c+O(ε2). Then we have that:

1

2π

∫ 2π

0

x(t, ε)dt =
1

2π

∫ 2π

0

x0 dθ + ε
1

2π

∫ 2π

0

x1 dθ +O(ε2)

=ε
a0
2

+ ε
1

2π

∫ 2π

0

a1
θ

2
sin θ − b1

θ

2
cos θ dθ +O(ε2)

=ε
(a1

2
+
a0
2

)
+O(ε2)

=⇒ A
dφ

dt
=Aεω = ε

a1(A)

2
+O(ε2).

Note that the rest of the terms in x1 canceled because they were of the form cos(nθ) or
sin(nθ) for n ∈ N \ {1}. It is now more physically obvious that the function of a0 is to shift
the center, while the function of a1 is to shift the frequency. �

Average � 0.4 Ε

Average � -0.8 Ε2
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t
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Figure 2. Changes from a1 with
hblue(x, y) = x2, hred(x, y) = x3, and ε = .01

Looking to the figure on the right we
see confirmation of this. The red function
represents the difference between a numeri-
cally integrated trajectory for hred(x, y) = x3

with initial conditions ẋ0 = 0 and x0 = 1
and cosx. The blue function represents the
difference between a numerically integrated
trajectory for hblue(x, y) = x2 with identi-
cal inital conditions and cosx (where both
are adjusted by their ‘center’). Notice that
an even forcing function dumps more energy
into either positive or negative x values, only
affecting the ‘center’ of the function rather
than the frequency, at least as seen in the
diagram, to O(ε2).

In a similar manner, the y2 damping does not shift the energy by a significant amount.
It merely dumps more energy into movement in one direction, rather than the other. By
Proposition 4.3 this acts only to change the center of oscillations. Thus we see intuitively
that even functions’ approximations do not fail until t ≈ O

(
1
ε2

)
because they don’t shift

total frequency or energy (at least to O(ε)), instead they shift frequency from one side to
the other, or energy from one direction to another. This has the effect of only changing the
‘center’ of oscillations, not something that creates secular terms like those arising from odd
forcing functions.

5. Problems with Two-Timing

Now that we see the equivalence of two-timing and averaging theory to O(ε) in dA
dt

and dφ
dt

,
we can begin to address difficulties with the methods. Example 3.1 highlights well the first of
these. It was by no means easy to find A(T1) in the above example, and in fact (13) can give
very complicated non-linear equations for A and φ, not greatly simplifying the problem at
all. However, we have tailored our approximation to be qualitatively clear after only a finite
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number of terms, as opposed to the infinite number required by regular perturbation theory,
so it is not surprising that this increase in clarity comes with a corresponding increase in
difficulty. Thus, we have our first problem, which can be annoying, but is hardly fatal to the
method; difficulty in evaluating A(T1) and φ(T1).

The second, more fundamental, problem is best illustrated with another example.

Example 5.1. Let h(x, y) = −8
3
y3, with initial conditions x(0) = 1 and ẋ(0) = 0. Then

a1(A) = 0 and b1(A) = 2A3. Solving (13) gives that x(t) = 1√
1−2εt cos t + O(ε). Thus,

two-timing gives a solution which goes to infinity as t→ 1
2ε

(for small ε).

10 20 30 40 50
t

-5

5

xHtL

Figure 3. Failure of Two-Timing
h(x, y) = −8

3
y3 and ε = .01

The blue trajectory shown on the right
is the numerically integrated trajectory for
this problem, whereas the red functions rep-
resent the envelope predicted by two timing(
± 1√

1−2εt

)
. Due to sensitivity in the numer-

ical integration it is difficult to tell whether
or not the exact solution goes to infinity in
finite time, as the approximation predicts.
However, following the lead of J.D. Cole and
J. Kevorkian, it is possible to introduce a
somewhat ad hoc rescaling of variables to
suggest that two-timing fails in this case.

Let x̃ = εαx, where α is contant in time.
Then our weakly nonlinear oscillator equa-
tion is transformed to:

ε−α ¨̃x− 8

3
ε1−3α( ˙̃x)3 + ε−αx̃ = 0.

Let α = 1
2
, and this transforms to ¨̃x− 8

3
( ˙̃x)3 + x̃ = 0, which is the fully nonlinear problem. In

other words, if x = O(ε−1/2), then we are no longer dealing with a perturbation problem, but
one that is fully nonlinear. Consider the above example, and let x =

√
a
ε
, where a is some

constant. The approximation reveals that this x value will be reached when t = 1
2ε
− 1

2a
.

Then, unsurprisingly considering the rescaling, when x = O(ε−1/2) we have that t is very
close to the asymptote of the approximation. So as the approximation is blowing up in finite
time, we are no longer able to discern whether or not it is a valid approximation because the
problem has transformed to a fully nonlinear one. By looking at the graph we can also see
that the rescaling is correct in predicting that the approximation will be good at least until
x = O(ε−1/2).

Physically, however, there is a deeper problem with this example. As can be seen by
looking at the envelope function predicted, if the initial conditions given are even slightly
off then the approximation will blow up before or after the exact solution begins to really
increase. This means that for a period of time the difference between the approximation and
the exact solution will be infinite. Thus the correctness of this approximation appears to
be very sensitive to intial conditions. In fact this provides a clearer test of when two-timing
should be taken with a grain of salt, than does scaling.
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Example 5.2 (Extended 5.1). Let λ = x
A(T1)

, and suppose that λ is in a nearly periodic

orbit centered at 0, with radius B. Then to O(ε), dB
dt

= ε
2A

(b1(AB)− b1(A)B). Let f(A) =
db1
dA
− b1(A)

A
. If f(A) > 0 then the solution exhibits the sensitivity to intial conditions discussed

above, whereas if f(A) < 0 then the approximation converges to the exact solution even when
given slightly different initial values than the exact solution (at least to O(ε)).

Proof. We have that ẋ = Ȧλ + Aλ̇ and ẍ = Äλ + 2Ȧλ̇ + Aλ̈. We also know from averaging
theory that Ȧ = εb1(A)/2 +O(ε2). This means that Ä = ε/2∂b1

∂A
dA
dt

+O(ε2) = ε2/4∂b1
∂A
b1(A) =

O(ε2). Inserting these into the original equation gives:

Aλ̈+ εb1(A)λ̇+ εh(Aλ,Aλ̇+ εb1(A)λ/2) + Aλ+O(ε2) = 0.

However, since h is independent of ε, the Ȧλ term within h will lead to, at most, O(ε2)
contributions. But then we have

Aλ̈+ ε
[
b1(A)λ̇+ h(Aλ,Aλ̇)

]
+ Aλ+O(ε2) = 0

From Proposition 4.2 we established that if h(x, y) is analytic, then A would not be zero
unless it was initially zero, so we can divide the equation through by this term. Then if we
assume that λ is nearly periodic, with radius B, two-timing and averaging theory give us
that:

dB

dt
=

ε

2A

1

π

∫ 2π

0

h(AB cos θ,−AB sin θ) sin θ − b1(A)B sin2 θ dθ +O(ε2)

=
ε

2A
(b1(AB)− b1(A)B) +O(ε2) where A,B treated as constant.

Note that the series expansions of both methods ensured that ignoring the O(ε2) terms in
the differential equation was justified. Inserting B = 1, we see that at least to O(ε) this
gives an equilibrium point at 1. Seeing that we deliberately ensure A(0) = x(0), and thus
that λ(0) = 1, we see that the solution begins on this equilibrium point. However, we are
unsure whether or not any O(ε2) changes will perturb the solution, so we seek to understand
the stability of the equilibrium point when B = 1. Thus we differentiate with respect to B
to see that if:

f(A) :=ε

[
db1

d(AB)
(AB)− b1(A)

A

]
B=1

=ε

[
db1
dA
− b1(A)

A

]
> 0 B = 1 unstable

f(A) <0 B = 1 stable.

Note that we are perfectly conscious that A is a function of time, the reason we nonetheless
arrive at this conclusion is due to its extremely slow change. For those still squeamish,
hopefully Example 5.3 will demonstrate the usefulness of f(A), as well as our lack of pretense
about its accuracy. �

Consider b1(A) = A3, as in the earlier example. Then we see that f(A) = 2εA2 > 0
(since A is never zero unless it is initially zero) and therefore that B = 1 is unstable.
Therefore, if the exact solution represents some physical phenomenon, and we measure the
initial amplitude (for use in our approximation) slightly imperfectly, we have that B 6= 1
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initially. However, in this case, this small error will compound rapidly, since B = 1 is an
unstable equilibrium point for dB

dt
. We give one final example to illustrate the usefulness of

considering λ and f(A).

Example 5.3. Let h(x, y) = 2y3
(
x2 − 2

3

)
be the equation for a ‘modified’ Van der Pol

oscillator, one with a cubic damping term instead of a linear damping term. Furthermore,
let x(0) = 1 and ẋ(0) = 0. It can be checked that b1(A) = A3

(
1− 1

4
A2
)
, so that it is clear

that just as in the ordinary Van der Pol oscillator, A = 2 is a stable equilibrium solution.
This then gives that f(A) = εA2(2−A2). But what are we to make of this? Since A is itself
a function of time, this seems to imply that the stability of B = 1 changes as time goes on.
We want to check whether or not this is true.

On the right is shown a test of this.
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Figure 4. Change of B
h(x, y) = 2y3

(
x2 − 2

3

)
and ε = .01

We have used Mathematica to numerically
compute A(t), with initial value A(0) = 9

10
.

Since dA
dt

= εb1(A)/2+O(ε2), we expect A to
grow from its initial value at A(0) = .9 and
approach the steady state solution A = 2
(as mentioned above, A = 2 is a stable
equilibrium solution). But above, we saw
that f(A) = εA2(2 − A2). Since we expect
f(A) to govern the stability of B = 1, we
see that initially f(A(0)) = .96ε > 0 or
that at t = 0, B = 1 is unstable. How-
ever, as t → ∞ we noticed that A → 2,
so limt→∞ f(A(t)) = −8ε < 0, or for large
times B = 1 is stable. We expect this change
in stability to occur when A ≈

√
2, since

f(
√

2) = 0.
To test this let t∗ be the time such that, for our numerically computed A(t), we have

A(t∗) = 2. We have also used Mathematica to numerically compute x(t) from the oscillator
equation itself, where we have specified that x(0) = 1 and ẋ(0) = 0. Since we also computed
A(t), we can then plot λ(t) = x(t)/A(t). We notice that given the initial conditions on x and

A, we have λ(0) = 10
9

and λ̇(0) = 0. Given Example 5.2 we then expect that λ(t) ≈ B(t) cos t,

where to O(ε), B(t) is given by Ḃ = ε (b1(AB)− b1(A)B) /2A and B(0) = 10
9

. But since
we are considering the stability of B = 1, it might be useful to consider λ(t) − cos t ≈
(B(t)− 1) cos t. This is what is plotted in blue in Figure 4. The red line is placed at t = t∗,
or at the time when we expect B = 1 to transform from an unstable equilibrium to a stable
equilibrium.

From the figure we can see that, as expected, we initially have that B(t) is increasing,
as it is repelled by the unstable equilibrium at B = 1. Also as expected, we have that as
t → ∞, B(t) → 1 since B = 1 has become a stable attractor for large times. In fact, the
switch between B = 1 being stable and being unstable occured only slightly before t = t∗,
when we expected it to occur. However, this slight discrepancy hints that f(A) is not very
useful quantitatively to predict the exact A value for such a shift to occur. Indeed, there is
no reason it should be, in deriving it we more or less assumed that A was constant. The
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reason it worked as well as it did was likely because B was so close to 1. However, with all
the uncertainty surrounding f(A) we can still use it to derive at least one useful relation, by
only looking at it for enormous solutions and already stable solutions.

Corollary 5.4. Suppose that b1(A) produces a trajectory which goes to infinity, and
limA→∞A

−pb1(A) = k for some k > 0 ∈ R, where p ∈ R is such that p > 1. Then B = 1
is unstable. Suppose instead that b1(A) produces a trajectory which approaches a stable
equilibrium point. Then B = 1 is stable, at least close to this point.

Proof. The first assumption gives us that as t → ∞, A → ∞. But then we see that since
limA→∞A

−pb1(A) = k for some nonzero k, that as t → ∞, b1(A) goes to kAp. But then
we see that limA→∞ f(A) = k(p − 1)ε limA→∞A

p−1. Since A began and stays positive, and
p > 1 we see that limA→∞ f(A) > 0. Thus, we see that as t→∞, B = 1 becomes more and
more unstable (since f(A) converges to some function of A).

Let A∗ be a stable equilibrium point of dA
dt

. This means that b1(A
∗) = 0 and εdb1

dA
(A∗) < 0.

However, we then immediately see that for such a point f(A∗) = εdb1
dA

(A∗) < 0. Thus, as
seen in Example 5.3, as A approaches a stable equilibrium point, B = 1 itself becomes a
stable equilibrium point. �

This Corollary allows us to see that for most trajectories, if h is such that the trajectory is
pushed to infinity, then it will ensure that a slight mistake in initial conditions will doom the
approximation (the notable exception is forcing proportional to the first power of oscillator
velocity). It also allows us to see that for most cases, two-timing gives excellent approxi-
mations. Provided that A approaches an equilibrium point, Bs convergence to 1 is almost
guaranteed.

Further research might be conducted into getting a more exact sense of when B = 1 is
a stable point and investigating more fully cases like Example 5.3. Some other interesting
cases might also be considered. Suppose that b1(A) = − sinA, and suppose that A(0) = π−δ
while x(0) = π + δ, where 0 < δ � 1. Then B(0) = 1 + 2δ/π + O(δ2). However, because A
and x started on opposing sides of an unstable equilibrium point, we see that A→ 0, whereas
x → 2π. This means that B → ∞, despite the difference of only 2δ in initial conditions.
Research might be conducted into more fully understanding when unstable equilibria affect
this sensitivity to initial conditions. Finally, this paper focused greatly on the difference
between even and odd forcing functions. Much effort was devoted to understanding the
amplitude and frequency shifts given by odd forcing functions, whereas even forcing functions
were more or less neglected. A more computationally inclined researcher might expand our
two timing considerations to the super-slow time T2 := ε2t to find differential equations
governing the O(ε2) changes in amplitude and frequency of an evenly forced oscillator.

Resources. All graphics in this paper were created using Wolfram Mathematica.
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